超导材料最诱人的应用是发电、输电和储能。由于超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场。而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5 兆瓦的电能及大量的冷却水,投资巨大。超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。
高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。
一、大电流应用
超导发电机
在电力领域,利用超导线圈磁体可以将发电机的磁场强度提高到5 万~6 万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5 ~10倍,达1 万兆瓦,而体积却减少1/2 ,整机重量减轻1/3 ,发电效率提高50%。
磁流体发电机
磁流体发电机同样离不开超导强磁体的帮助。磁流体发电发电,是利用高温导电性气体(等离子体)作导体,并高速通过磁场强度为5 万~6 万高斯的强磁场而发电。磁流体发电机的结构非常简单,用于磁流体发电的高温导电性气体还可重复利用。
超导输电线路
超导材料还可以用于制作超导电线和超导变压器,从而把电力几乎无损耗地输送给用户。据统计,目前的铜或铝导线输电,约有15% 的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。
超导储能
超导储能不仅可以在超导体电感线圈内无损耗地储存电能,还可以通过电力电子换流器与外部系统快速交换有功和无功功率,用于提高电力系统稳定性、改善供电品质。
将一个超导体圆环置于磁场中,降温至圆环材料的临界温度以下,撤去磁场,由于电磁感应,圆环中便有感应电流产生,只要温度保持在临界温度以下,电流便会持续下去。试验表明,这种电流的衰减时间不低于10万年。显然这是一种理想的储能装置,称为超导储能。
超导储能的优点很多,主要是功率大、质量轻、体积小、损耗小、反应快等等,因此应用很广。如大功率激光器,需要在瞬时提出数千乃至上万焦耳的能量,这就可由超导储能装置来承担。超导储能还可以用于电网。当大电网中负荷小时,把多余的电能储存起来,负荷大时又把电能送回电网,这样就可以避免用电高峰和低谷时的供求矛盾。
二、抗磁性应用
超导磁悬浮列车
利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。
托卡马克
是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克装置,使基础理论研究和系统运行参数得到很大提高。
核聚变反应堆“磁封闭体”
核聚变反应时,内部温度高达1 亿~2 亿℃,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。
三、电子学应用
超导计算机
高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。
超导微波器件
本世纪初美国航天局(NASA)提出了一个雄心勃勃的空间发展计划, 为21 世纪战略目标的实现提供技术支撑, 其中就包括以高温超导滤波器为核心器件的"低温接收机前端。除去将高温超导器件用于单个卫星外,NASA 还提出用十年时间建设一个由大量低轨卫星、同步卫星和地面站组成的天基-地基高速率全球数据传输系统。据NASA 介绍, 在这个系统中使用基于高温超导滤波器的低温接收机, 将给K 波段的系统带来6 dB 的好处, 可以使低轨卫星之间(LEO-LEO)的数据率提高4 倍(或减少75 %的传输功率), 使低轨与同步卫星之间(LEOGEO)的数据率提高80 %(或减少45 %的传输功率), 同时该技术还可以用于从地面传感器、气球、飞机等采集数据。下载本文