视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
RCD吸收电路参数的计算
2025-09-22 17:54:20 责编:小OO
文档
RCD吸收电路参数的计算-根据资料整理

我们知道,在电路中大多数尖峰毛刺等都是由于变压器的漏感或布线等分布电感在突变电流的作用下产生的,在开关管关断过程中,变压器的漏感及导线的分布电感中的电流就会在开关管上产生电压尖峰,而变压器的漏感虽然可以通过合理的电路设计和绕制方式使之减小,但是不可消除的。设计和绕制是否合理,对漏感的影响是很明显的。在匝比较接近的一些设计中,漏感可以设计的很小,但在大多数反激电源中,由于匝比较大,因此即使采用合理的方法,漏感也只能控制在初级电感的2%左右。

    在实际工作中,漏感与励磁电感串联。励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,因此在开关管关断时,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为了防止上述情况的出现,需要增加RCD吸收电路,引入RCD钳位电路的目的是消耗掉漏感中储存的能量,但一定要注意不能消耗主励磁电感能量,否则会降低电路效率。

计算吸收电路的参数,首先需要确定漏感中储存的能量,因为漏感中储存的能量是我们想要吸收掉的,单周期内漏感中的能量可以根据下式计算:

            E=0.5×Ls×Ip×Ip

     其中:Ip为MOS管关断时开关管的峰值电流

           Ls为变压器漏感

 在实际应用中,吸收电容的一端是直接接在输入电源正级的,因此吸收电容上电压只有两部分:反射电压(输出电压除以变压器匝比)、漏感引起的冲击电压。我们可以认为在MOS管关断时候吸收电容上电压很快升高到设计的最高值,然后二极管截止,电容上电压通过电阻放电,电压会越来越低。在MOS管关断期间内,要保证电容上电压不会低于反射电压。这是因为,如果电阻放电过快在MOS管关断时间内电容上电压降低到反射电压,那么RCD吸收电容及电阻就等效并联在了变压器的副边,消耗的将是期望传递到副边的能量,将降低模块的效率。这个时候从吸收电容上可以看到,MOS管关断期间内,吸收电容上电压出现了平台。

由于漏感的能量在MOS管关断时需要由吸收电容来承受,电容如果选择的太小,漏感能量吸收后,电压升高的仍会比较高,起不到吸收的作用。我们可以根据期望的最高电压来进行设计,比如说我们知道反射电压为U1,期望的过充电压为U2,并且希望在开关管开始时,电容上的电压恰好放电到反射电压,这样可以计算吸收电容的数值。这是因为在每个开关周期内,电容电压变化产生的能量差与漏感中的能量基本是一致的(见备注1),因此有下式

0.5×Ls×Ip×Ip=0.5×C×(U1+U2)×(U1+U2)-0.5×C×U1×U1

在上式中,漏感是可以测量的,Ip也是可以计算的,U1是以知的,U2是可以期望的,因此就可以计算吸收电容的值。

确定吸收电容后,可以根据电容的放电公式计算吸收电阻。电容放电公式:

U2=U1*exp(-t/τ),

t=截止期时间(按照最小占空比计算),

根据上式可以计算τ值,然后根据公式τ=RC来计算吸收电阻。

通过上面的方法计算可以初步得到RC的值,具体的吸收电路的参数还要经过实际的调试才能得到最优的效果。

备注1、

  RC值的确定需按最大输入电压、最小占空比条件工作选取,否则,随着占空比的减小,关断时间会越来越大,原来恰好放电到反射电压的电容电压波形会出现平台,钳位电路将消耗主励磁电感能量。

在MOS管开通过程中,电容仍通过电阻放电,但由于RC放电在放电后期相同时间内电压变化比较小,同时设计时要按最小占空比时候设计,因此我们仍可以按照假设进行RC的计算。下载本文

显示全文
专题