视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
智能车摄像头原理详解
2025-09-22 17:46:01 责编:小OO
文档
摄像头工作原理详解

摄像头的工作原理

摄像头的工作原理是:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。具体而言(参见图5-1),摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,电压信号的高低起伏反映了该行图像的灰度变化。当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如0.3V),并保持一段时间。这相当于,紧接着每行图像信号之后会有一个电压“凹槽” ,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。然后,跳过一行后(因为摄像头是隔行扫描的),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着会出现一段场消隐区。该区中有若干个复合消隐脉冲,其中有个远宽于(即持续时间远长于)其它的消隐脉冲,称为场同步脉冲,它是扫描换场的标志。场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。摄像头每秒扫描25幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50

场图像。奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。

摄像头有两个重要的指标:分辨率和有效像素。分辨率实际上就是每场行同步脉冲数,这是因为行同步脉冲数越多,则对每场图像扫描的行数也越多。事实上,分辨率反映的是摄像头的纵向分辨能力。有效像素常写成两数相乘的形式,如“320x240” ,其中前一个数值表示单行视频信号的精细程度,即行分辨能力;后一个数值为分辨率,因而有效像素=行分辨能力×分辨率。

摄像头选择

因为S12单片机的AD转换时间在不超频的情况下最短为7us,所以如果选用一个分辨率为320线的摄像头,则单行视频信号持续的时间约为20ms/320=62.5us,AD对单行视频信号采样的点数将不超过

[62.5/7]+1=9个。若使用分辨率为0线的摄像头,则单行视频信号持续的时间约为20ms/0=31us,AD对单行视频信号采样的点数将不超过[31/7]+1=5个。这就是说,分辨率越高,单行视频信号持续的时间就越短,AD对单行视频信号所能采样的点数就越少。如前所述,摄像头的分辨率越高,尽管可提高纵向分辨能力,却会减少单片机AD采样单行信号的点数,削弱了横向分辨能力。现在市场上摄像头的分辨率通常都在300线以上,由此推得单行视频信号的持续时间至多为20ms/300=66us左右,AD采样每行视频信号的点数至多为

[66/7]+1=10个(不超频情况下),这对赛车定位来说是不够的。所以,在选择摄像头时,应当尽量选择分辨率低的摄像头,这样做会降低摄像头的纵向分辨能力(但降低后仍然远远够用),却可以增加单片机采样单行视频信号的点数,提高横向分辨能力。在本次设计过程中,在市场上所能找到的分辨率最低的摄像头是采用1/3 Omni Vision CMOS为传感芯片的摄像头,其分辨率为320线。另外,为了使得视野大小合适,选用了3.6mm的镜头。以下章节中的视频采集工作就是基于此种摄像头的。

信号分离电路

要能有效地对视频信号进行采样,首先要处理好的问题是如何提取出摄像头信号中的行同步脉冲、消隐脉冲和场同步脉冲。这里有两种可行的方法。第一,直接通过单片机AD进行提取。因为行同步脉冲、消隐脉冲或场同步脉冲信号的电平低于这些脉冲以外摄像头信号的电平,所以据此可设定一个信号电平阈值来判断AD采样到的信号是否为上述三类脉冲。第二,就是给单片机配以合适的外围芯片,此芯片要能够提取出摄像头信号的行同步脉冲、消隐脉冲和场同步脉冲以供单片机作控制之用。

考虑到单片机的速度有限,而一些脉冲的间隔时间又较短,为了减轻其处理负担,采用了第二种方法进行信号提取。LM1881视频同步信号分离芯片(简称1881)可从摄像头信号中提取信号的时序信息,如行同步脉冲、场同步脉冲和奇、偶场信息等,并将它们转换成TTL电平直接输给单片机的I/O口作控制信号之用。1881的端口接线方式如图5-4 所示。

其中,引脚2为视频信号输入端,引脚1为行同步信号输出端(如图5-5中的b)。引脚3为场同步信号输出端,当摄像头信号的场同步脉冲到来时,该端将变为低电平,一般维持230us,然后重新变回高电平(如图5-5中的c)。引脚7为奇-偶场同步信号输出端,当摄像头信号处于奇场时,该端为高电平,当处于偶场时,为低电平。事实上,不仅可以用场同步信号作为换场的标志,也可以用奇-偶场间的交替作为换场的标志。

由1881及其外围电路构成的摄像头采样电路如图5-6 所示。摄像头视频信号端接1881的视频信号输入端,同时也接入S12的一路AD转换端口(选用AD0)。1881的行同步信号端(引脚1)接入外部中断引脚(IRQ),同时将LM1881的场同步信号和奇-偶场同步信号输入到ECT模块中(选用PT1,PT2),这样,既可以采用查询方式获取奇偶场信号跳变,又可以采用脉冲捕捉方式获取电平变化。通过这样的接线,为软件开发提供了多种选择的机会,使程序更加灵活。下载本文

显示全文
专题