视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
【干货分享】开关电源环路补偿设计步骤讲解
2025-09-30 19:51:32 责编:小OO
文档
【干货分享】开关电源环路补偿设计步骤讲解

1.对于硬件工程师来说,开关电源和运放的信号处理电路是最常遇到的,都是典型的带负反馈的闭环控制系统。因此,这两类电路设计的稳定性和控制理论密切相关。简化的闭环控制系统框图如图1所示,被控对象的传递函数为H,反馈部分的传递函数为G。

图1

以上各式中的GH一般称为系统的环路增益或者开环增益。根据式(2)可知,当1+GH=0,即GH=-1时,意味着环路增益为1,相位滞后180°,系统不稳定发生自激振荡。当然也可以从另一个角度进行理解,系统发生自激振荡时,不需要输入量Xi,即净输入量,可得GH=-1,即反馈量Xf和输出量Xo形成彼此互相维持的关系。从稳定性条件出发,我们可以知道环路增益小于1时系统可以稳定,相位滞后不到180°时系统可以稳定。这表明左半平面的极点和零点都在某一方面提升稳定性,另一方面降低稳定性。比如左半平面极点可以使增益降低,这能提升稳定性;但是极点增加了相位滞后,这降低了稳定性。比如左半平面零点使相位超前,这能提升稳定性;但是零点使增益增加,这降低了稳定性。只有右半平面零点是最特殊的,增加增益的同时相位滞后,这会加剧系统不稳定。根据控制理论的稳定性条件可知,相位裕量至少为45°,转化为伯德图的话,就是要求在增益为0dB时的穿越频率处,斜率应该为-20dB/decade,即负20dB每十倍频,或斜率为,两者等价。根据式(3)可知,当GH>>1时,即引入深度负反馈后,Xf=Xi。这就是为什么运放的虚短需要在引入深度负反馈时才成立的原因。由于运放本身的开环放大倍数H已经非常大,引入负反馈后一般都能满足深度负反馈的要求。

根据式(4)可知,如果想要直流稳态误差为0,则应满足。这就是为什么控制系统的低频环路增益(开环增益)要尽量大的原因,这点在开关电源环路设计中很重要。

对于一般的运放电路而言,图1即是其控制系统框图。而开关电源的系统框图则较为复杂,如图2所示,可以将PWM调制器,开关管和LC滤波器合并统称为功率级,用H表示,误差补偿器用G表示,反馈分压系数用k表示,实际设计中我们经常将k和G合并在一起称为G,则简化后的框图和图1类似,环路增益为GH。另外,实际系统中还经常存在输入扰动和负载扰动,通过线性叠加定理,总输出则可表示为下式:

通过式(5)可以比较清楚地看到输入扰动和负载扰动对输出的影响,输入扰动对应线性调整率指标,负载扰动则对应负载调整率指标。另外通过前述结论我们知道,要想稳态误差越接近于0,则GH直流环路增益应该越大越好。

图2以笔者平常设计中遇到最多的反激式开关电源为例,控制芯片采用的基本都是电流峰值模式。反激式开关电源是从buck-boost拓扑演变而来,拓扑示意如图3所示,该拓扑中所有参数为转化为到副边侧后的等效参数。

图3

电流模式的的功率级传递函数为:

图4

在开头所说的文章中我们已经得到了使用TL431的2型补偿器传递函数,此例采用如图5所示的环路接法,其传递函数为:

图5

图6将功率级传递函数和补偿器传递函数的伯德图进行相加叠加,就得到环路增益GH的伯德图,如图7中的橙色曲线所示。

图7记补偿后的穿越频率为fc(即我们人为想要设置的截止频率,已知),补偿器传递函数的积分器部分的穿越频率为fp0,功率级传递函数的极点(补偿器传递函数的零点)为fp,补偿器的中频带增益为Gp,由于伯德图将传递函数从乘除关系转化为了加减关系,各曲线之间可以通过平移关系进行求解,因此可以推导得出以下结论:

据此求得Gp大小。当然以上所有推导都基于一个前提条件:电路工作于CCM(连续导通模式)。

2. 设计实例

假设设计好完毕功率级的反激电源输出12V,1A(负载12Ω),轻载时电流为0.5A(负载24Ω),输入为220V市电,原边侧电感Lp=10mH,匝数比n=9.8,输出电容为470uF,其ESR=50mΩ,开关频率fs=55KHz,电流检测电阻Ri=1Ω,最大占空比D=0.45。

现在我们得到了式(9)(10)(11),根据上篇文章静态工作点的计算方法,假设算的R4=2K,R5=1K,光耦的CTR=1,R6=6K,由于输出12V,基准电压为2.5V,所以可选择R1=15K,R2=3.9K。因此,根据式(9)可求得:R3=10K。根据式(10)可求得:C1=14nF,选为15nF。根据式(11)可求得:C=3.8nF,选为3.9nF。当然最后要根据电路板实测再进行参数调整。下载本文

显示全文
专题