视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
全等三角形中动点问题
2025-09-30 19:50:49 责编:小OO
文档
个性化辅导授课案

教师:       学生:         日期:          星期:      时段:          

课题全等三角形的动点问题分析讲解
学情分析.动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论

教学目标

考点分析

思路:

1.利用图形想到三角形全等,相似及三角函数

2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)

3.结合图形和题目,得出已知或能间接求出的数据

4.分情况讨论,把每种可能情况列出来,不要漏

5.动点一般在中考都是压轴题,步骤不重要,重要的是思路

6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论

教学 重点

难点

利用熟悉的知识点解决陌生的问题
教学方法教师引导,自主思考
教学过程
三角形与动点问题

1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=        .

 

                                    

2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).

3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标.

                                                               

4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.

(1)求证:△ADF≌△CEF

(2)试证明△DFE是等腰直角三角形

                                                      

5、如图,在等边的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问

(1)在爬行过程中,CD和BE始终相等吗?

(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,求证: 

(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确  

6、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.

   (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;

   (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.

7、如图,已知中,厘米,厘米,点为的中点.

(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?

8、如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90,使EF交矩形的外角平分线BF于点F,设C(m,n).

(1)若m = n时,如图,求证:EF = AE;

(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.

9.(本溪)在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.

(1)如图1,当点在线段上,如果,则        度;

(2)设,.

①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由;

②当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论.

10.如图, 直线与轴、轴分别交于点,点.点从点出发,以每秒1个单位长度的速度沿→方向运动,点从点出发,以每秒2个单位长度的速度沿→的方向运动.已知点同时出发,当点到达点时,两点同时停止运动, 设运动时间为秒.

(1)设四边形MNPQ的面积为,求关于的函数关系式,并写出的取值范围. 

(2)当为何值时,与平行?

教学反思:

3、本次课后作业:

1、如图,为正方形的一条对角线,点为边延长线上的一点,连接,在上取一点,使,过点作于,交于点,连接,交于点,交于点.

(1)求证:;

(2)求证: 

 

2、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:

(1)当t为何值时,△PBQ是直角三角形?

(2)设四边形APQC的面积为y(cm2),求y与t的

关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;

  

3、(2009宁夏)已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.

(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;

(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.

        

4、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).

(1)设四边形PCQD的面积为y,求y与t的函数关系式;

(2)t为何值时,四边形PQBA是梯形?

(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;

(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. 

5、在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。

(1)用含x的代数式表示AE、DE的长度;

(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;

(3)当为何值时,为直角三角形。

6. 如图,在等腰梯形中,∥,,AB=12 cm,CD=6cm , 点从开始沿边向以每秒3cm的速度移动,点从开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。

(1)求证:当t=时,四边形是平行四边形;

(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;

(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。

四、学生对于本次课的评价:

 ○ 特别满意   ○ 满意    ○ 一般   ○ 差   

                                                 学生签字:

五、教师评定:

1、 学生上次作业评价:   ○ 非常好  ○好   ○ 一般   ○ 需要优化

2、 学生本次上课情况评价:○非常 好 ○好   ○ 一般   ○ 需要优化

                                                 教师签字:

                                         

毅杰教育教务处下载本文

显示全文
专题