一、
选择题
1-6 CDCAD B 7-12 BCCADA
二、填空题
13、 x>2
14、 2
15、 7
16、 9.4
17、 20
18、 ①②③④
三、解答题
19、
| 解答: | 解:原式=4﹣1 =3. |
| 解答: | 解:去括号得:3x+12=x, 移项合并得:2x=﹣12, 解得:x=﹣6. |
| 解答: | 解:(1)画树状图得: 则有9种等可能的结果; (2)∵韦玲胜出的可能性有3种, 故韦玲胜出的概率为:. |
| 解答: | 解:(1)小旗A′C′D′B′如图所示; (2)点A′(6,0),C′(0,﹣6),D′(0,0); (3)∵A(﹣6,12),B(﹣6,0), ∴AB=12, ∴线段BA旋转到B′A′时所扫过的扇形的面积==36π. |
| 解答: | 解:(1)由图表可知,每10分钟放水250m3, 所以,第80分钟时,池内有水4000﹣8×250=2000m3; (2)设函数关系式为y=kx+b, ∵x=20时,y=3500, x=40时,y=3000, ∴, 解得, 所以,y=﹣250+4000. |
| 解答: | (1)解:四边形ABEC一定是平行四边形; (2)证明:∵四边形ABCD为等腰梯形,AD∥BC, ∴AB=DC,AC=BD, 由折叠的性质可得:EC=DC,DB=BE, ∴EC=AB,BE=AC, ∴四边形ABEC是平行四边形. |
| 解答: | (1)解:∵AD、BC是⊙O的两条切线, ∴∠OAD=∠OBC=90°, 在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=, 根据勾股定理得:OD==,OC==; (2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°, ∴四边形ABED为矩形, ∴BE=AD=2,DE=AB=6,EC=BC﹣BE=, 在Rt△EDC中,根据勾股定理得:DC==, ∵===, ∴△DOC∽△OBC; (3)证明:过O作OF⊥DC,交DC于点F, ∵△DOC∽△OBC, ∴∠BCO=∠FCO, ∵在△BCO和△FCO中, , ∴△BCO≌△FCO(AAS), ∴OB=OF, 则CD是⊙O切线. |
| 解答: | 解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上, ∴, 解得. ∴二次函数的解析式为:y=x2﹣6x+5. (2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3, 整理得:x2﹣6x+8=0,解得x1=2,x2=4. 结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4. (3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N, 令x=0,得y=﹣6;令y=0,得x=﹣2. ∴M(﹣3,0),N(0,﹣6), ∴OM=3,ON=6,由勾股定理得:MN=3, ∴tan∠MNO==,sin∠MNO==. 设点C坐标为(x,y),则y=x2﹣6x+5. 过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y. 过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F, 在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x. ∴FN=DN﹣DF=6+y﹣x. 在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x). ∴CE=CF+EF=x+(6+y﹣x), ∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得: CE=(x2﹣4x+11)=(x﹣2)2+, ∴当x=2时,CE有最小值,最小值为. 当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3). △ABC的最小面积为:AB•CE=×2×=. ∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为. |