视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
论第一次数学危机产生的原因和影响
2025-09-30 19:43:17 责编:小OO
文档
论第一次数学危机产生的原因和影响

                     

目录

第一次数学危机的简介    2

第一次数学危机产生的原因    3

第一次数学危机的解决    4

第一次数学危机的产物:古典逻辑与欧氏几何学    5

第一次数学危机的影响    6

参考文献    7

                                          

数学科学学院数学与应用数学

                                                  赵文君

                                                0710120040

摘要:毕达哥拉斯关于数的信条及以数为基础的宇宙模型的破产,导致了第一次数学危机。这一危机的影响是巨大的,它不仅推动了数学及其相关学科的发展,使古希腊数学的基础发生了根本性的变化,而且推动了整个科学的发展。本文就第一次数学危机的产生、解决到影响作了简单的介绍。

关键词:  第一次数学危机   无理数   毕达哥拉斯  

 

我们了解的数学危机有三大,如果说每次危机都把数学家们推入黑暗,但是随着危机的解决带来是更好的光明,三大数学危机带来的也是三大数学成就。从哲学的观点来看矛盾就是无处不在的,数学这么严密的学科也不例外。纵观数学的发展,就是不断的产生冲突和危机并把它们解决的过程。知识是人们总结出来的,人的认识是有限的,所以知识本身是应该随着社会的发展不断地突破的。一次大的数学危机,对人们的影响是非常大的,当你一直认为理所当然的事却被指出是错的的时候,人们是很难接受的,所以危机的解除也是相当困难的事情。我们并未经历这么大的数学危机,不能体会自己的观念完全被推翻的感受。基于对此我爱好或者说好奇,我选择了这个主题。

第一次数学危机的简介:

  从某种意义上来讲,现代意义下的数学来源于古希腊的毕达哥加斯学派。这个学派兴旺的时期为公元前500年左右,它是一个违心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。

  毕达哥加斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。

  不可通约性的发现引起第一次数学危机。有人说,这种性质是西帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。

  同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大,这也是第一次数学危机的自然产物。

  回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。

  但是,自此以后希腊人把几何看成了全部数学的基础,把数的研究隶属于形的研究,割裂了它们之间的密切关系。这样做的最大不幸是放弃了对无理数本身的研究,使算术和代数的发展受到很大的,基本理论十分薄溺。这种畸形发展的局面在欧洲持续了2000多年。

第一次数学危机产生的原因:

毕达哥拉斯学派在数学上的一项重大发现是证明了毕达哥拉斯定理即我们所说的勾股定理。就是指直角三角形三边有如下关系的一个命题,即:

          (1)

和  分别代表直角三角形的两条直角边,表示斜边。这个学派还认为满足(1)式的数有无穷多个,并提供了下述三元数组,即若是奇数,并且,则有:

, ,                       (2)

这三元数组只是使(1)式成立的充分条件,而不是必要条件。当毕达哥拉斯学派进一步致力于等式(1)和等式(2)的研究时,米太旁登的希帕苏斯,发现了在等腰直角三角形中,(1)式中出现了下述结果:

                 (3)

如果直角三角形的两条直角边都等于1 时,其斜边的长就恰好等于。而找不到可以公度的几何实体,这在当时的认识水平下,无疑是一个矛盾。此外,是否是个数?对于毕达哥拉斯学派来说,这确实是一个可怕的问题。因为如果承认它是数,就要与“数即万物”中所说的整数发生不可调和的矛盾。相传当时毕达哥拉斯学派的人正在海上,就因这一发现把希帕苏斯投到海里,因为他在宇宙中搞出这样一个东西否定了毕达哥拉斯学派的信

条———宇宙中的一切现象都归结为正整数或正整数之比。等式(3)所引出的对于毕达哥拉斯学派是一个致命的打击。“ 数即万物”的世界观被彻底地动摇了。由此引发了数学的第一次危机!。

第一次数学危机的解决:

数学的第一次危机的解决大约在公元前"#$ 年,才华横溢的希腊数学家毕达哥拉斯的学生阿契塔和欧多克索斯以及柏拉图给出两个相等的定义从而消除了这次危机。他们给出的定义与所涉及的量是否有公度无关,其实这也是自然的,因为两个线段的比本来与第三个线

段无关。

毕达哥拉斯学派首先给出了以单位长为边的正方形的对角线的长度不能用整数之比来表示的证明方法,证明过程如下:

假设:是有理数,设(p,q均为自然数,且(p,q)=1)

所以, 

两边平方得:    (1)

所以必为2的倍数,故q必为2的倍数。

因为 (p,q)=1,得p为奇数。

记, 

把两式代入(1)得:

整理得:,显然左边为奇数右边为偶数,引出矛盾,故为无理数。

还有很多方法可以证明为无理数。是无理数的种种证明,使我们对无理数有了进一步的认识,对数学中的美、对各种丰富的数学思想方法会有更深刻的感受。

  数学的第一次危机的实质主要在于数学家的思维囿于错误的哲学思想,即主要在于数学家的思维被错误哲学思想支配了。本来就是一个数,但它的发现结果反而导致了数学的危机,并成了“ 数即万物”,而“数”又只能是整数或整数的比这种错误哲学观点的牺牲品。

第一次数学危机的产物:古典逻辑与欧氏几何学

  亚里士多德的方对于数学方法的影响是巨大的,他指出了正确的定义原理。亚里士多德继承自己老师柏拉图的观念,把定义与存在区分,由某些属性来定义的东西可能未必存在(如正九面体)。另外,定义必须用已存在的定义过的东西来定义,所以必定有些最原始的定义,如点、直线等。而证明存在的方法需要规定和。

  亚里士多德还指出公理的必要性,因为这是演绎推理的出发点。他区别了公理和公设,认为公理是一切科学所公有的真理,而公设则只是某一门学科特有的最基本的原理。他把逻辑规律(矛盾律、排中律等)也列为公理。 

  亚里士多德对逻辑推理过程进行深入研究,得出三段论法,并把它表达成一个公理系统,这是最早的公理系统。他关于逻辑的研究不仅使逻辑形成一个学科,而且对数学证明的发展也有良好的影响。

  亚里士多德对于离散与连续的矛盾有一定阐述。对于潜在的无穷(大)和实在的无穷(大)加以区别。他认为正整数是潜在无穷的,因为任何整数加上1以后总能得到一个新的数。但是他认为所谓“无穷集合”是不存在的。他认为空间是潜在无穷的,时间在延长上是潜在无穷的,在细分上也是潜在无穷的。

  欧几里得的《几何原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系。这对数学乃至哲学、自然科学的影响一直延续到十九世纪。牛顿的《自然哲学的数学原理》和斯宾诺沙的《伦理学》等都采用了欧几里得《几何原本》的体例。

  欧几里得的平面几何学为《几何原本》的最初四篇与第六篇。其中有七个原始定义,五个公理和五个公设。他规定了存在的证明依赖于构造。

  《几何原本》在西方世界成为仅次于《圣经》而流传最广的书籍。它一直是几何学的标准著作。但是它还存在许多缺点并不断受到批评,比如对于点、线、面的定义是不严格的:“点是没有部分的对象”,“线是没有宽度的长度(线指曲线)”,“面是只有长度和宽度的对象”。显然,这些定义是不能起逻辑推理的作用。特别是直线、平面的定义更是从直观来解释的。

另外,他的公理五是“整体大于部分”,没有涉及无穷量的问题。在他的证明中,原来的公理也不够用,须加上新的公理。特别是平行公设是否可由其他公理、公设推出更是人所瞩目的问题。尽管如此,近代数学的体系特点在其中已经基本上形成了。

第一次数学危机的影响:

第一次数学危机的影响是巨大的。

首先,它推动了数学及其相关学科的发展。例如,欧几里得几何就是在第一次数学危机中产生的。除此而外,数理天文学的发展也有赖于第一次数学危机。由于宇宙是几何的,宇宙的规律是几何规律,因此研究宇宙就离不开几何图形以及几何理论。

其次,第一次数学危机使古希腊数学基础发生了根本性的变化。我们知道,在第一次数学危机之前,古希腊的数学是以数为基础的。第一次数学危机之后,古希腊的数学基础则转向几何。以几何为基础,使数学的公理化成为可能。而以数为基础,在古代是不可能建立数学的公理系统的。这只要对照一下事实就清楚了。在古代,有不少国家的数学是以数为基础的,在这些国家从未建立起数学的公理系统。即使在西方,数的公理系统的建立也是很晚的事情。

最后,数学公理系统的建立,还对整个科学的发展起了巨大的推动作用。我们知道,近代科学诞生于西方,其原因是多方面的。譬如,生产的发展、实验之风的流行、文艺复兴运动或宗教改革运动带来的思想,等等。但我们若追根溯源就会发现,近代科学的源头是古希腊文明。古希腊文明包括很多因素,但与近代科学最直接相关的是它的科学精神和科学方法。古希腊的数学公理系统,是它的科学精神和科学方法的集中体现。近代西方学者正是通过学习古希腊的数学公理系统,才领悟并把握古希腊的科学精神和科学方法的。借助这种科学精神和科学方法,他们创立了近代科学。不仅如此,古希腊的数学公理系统还是近代科学的模型或种子。有了这粒种子,近代科学才得以诞生。

就这样,由于古希腊数学的哲学背景,使其有可能建立世界上第一个数学公理系统。而这个系统是近代科学的种子。这粒种子在近代西方适宜的土壤条件下发芽、生长,最后成为一棵科学的参天大树。从这个意义上来看,我们可以说第一次数学危机对近代科学乃至整个科学的发展起了巨大的促进作用。

概而言之,第一次数学危机,不仅仅是数学领域的一个事件,也不仅仅是古希腊科学中的一个事件,而是整个科学发展进程中的一个重要事件,也是整个人类文明演变历史中的一个重要事件。

参考文献

1、(美)H.伊夫斯,《数学史上的里程碑》,欧阳绛等译,上海科学技术出版社,1990

2、  毛建儒 ,《第一次数学分析及其哲学分析》,2005年2月

3、(美)H.伊夫斯,《数学史概论》,欧阳绛等译,山西人民出版社,1986

4、  林夏水,《数学哲学》,北京:商务印书馆 ,2003

The reason and influence of the first mathematical crisis

Summary: The firtst mathematical crisis has great influence on the development of mathematical and some other related disciplines. It has promotes the development of the entire science. Here I will introduces it from three aspects: the production ,solution and influence of the first mathematical crisis .

Key Word: the first mathematical crisis     irrational number      pythagoras 下载本文

显示全文
专题