数学试卷
一、选择题(本题共16分,每小题2分)
第1-8题均有四个选项,符合题意的选项只有..一个。 1. 下列几何体中,是圆柱的为
2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是
(A )>4a (B )>0b c - (C )>0ac (D )>0c a +
3. 方程式⎩
⎨
⎧=-=-14833
y x y x 的解为
(A )⎩⎨
⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==1
2
y x
4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。已知每个标准足球场的面积为7140m 2
,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o 60,则该正多边形的内角和为
(A )o 360 (B )o 540 (C )o 720 (D )o 900
6. 如果32=-b a ,那么代数式b a a
b a b a -⋅⎪⎪⎭
⎫ ⎝⎛-+222的值为
(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系
()02≠=+=a c bx ax y 。下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型
和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为
(A )10m (B )15m (C )20m (D )
8. 上图是老北京城一些地点的分布示意图。在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;
②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;
③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;
④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。 上述结论中,所有正确结论的序号是
(A )①②③ (B )②③④ (C )①④ (D )①②③④ 二、填空题(本题共16分,每小题2分)
9. 右图所示的网络是正方形网格,BAC ∠ DAE ∠。(填“>”,“=”或“<”)
10. 若x 在实数范围内有意义,则实数x 的取值范围是 。
11. 用一组a ,b ,c 的值说明命题“若<b a ,则<bc ac ”是错误的,这组值可以是=a ,
=b ,=c 。
12. 如图,点A ,B ,C ,D 在⊙O 上,D C B C )
)))=,︒=∠30CAD ,︒=∠50ACD ,则
=∠ADB 。
13. 如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4=AB ,
3=AD ,则CF 的长为 。
14. 从甲地到乙地有A ,B ,C 三条不同的公交线路。为了解早高峰期间这三条线路上的公交车从甲
地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
早高峰期间,乘坐 (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用
15. 某公园划船项目收费标准如下:
船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150
某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为
元。
16. 2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所
示,中国创新综合排名全球第22,创新效率排名全球第。
三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,
每小题7分)解答应写出文字说明、演算步骤或证明过程。
17. 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程。
已知:直线l及直线l外一点P。
求作:直线PQ,使得PQ∥l。
作法:如图,
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC
的延长线于点Q;
③作直线PQ。所以直线PQ就是所求作的直线。
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明。
证明:∵=AB ,=CB ,
∴PQ ∥l ( )(填推理的依据)。
18.计算4sin45°+(π-2)0
- +∣-1∣
19.解不等式组:
20.关于x 的一元二次方程ax 2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根 . 21.如图,在四边形ABCD 中,AB(1)求证:四边形ABCD 是菱形; (2)若AB=,BD=2,求OE 的长 .
22. 如图,AB 是⊙O 的直径,过⊙O 外一点P 作⊙O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD.
(1)求证:OP⊥CD;
(2)连接AD ,BC ,若∠DAB=50°,∠CBA = 70°,OA=2,求OP 的长.
23.在平面直角坐标系xOy 中,函数y=(x>0)的图象G 经过点A(4,1),直线L:y =+b 与图象G 交于点B ,与y 轴交于点C (1)求k 的值;
①当b=-1时,直接写出区域W内的整点个数;
②若区域W内恰有4个整点,结合函数图象,求b的取值范围
24.如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于
点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小腾根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
X/cm0123456
y1/cm
y2/cm
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1)并画出(x,y2)函数 y1,y2的图象;
(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为 cm.
25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
课程成绩在70≤x<80这一组的是:
70 71 71 71 76 76 77 78 79 79 79
,
课程平均数中位数众数
A m
B7083
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 (填"A"或"B"),理由是 ,
(3)假设该年级学生都参加此次测试,估计A课程成绩跑过分的人数.
26.在平面直角坐标系xOy中,直线y=4X+4与x轴y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A将点B向右平移5个单位长度,得到点C.
(1)求点C的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围
27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE 的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC;
(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系元xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N 上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的"闭距离",记作d(M,N) .
已知点A(-2,6),B(-2,-2),C(6,-2).
(1)求d(点0,△ABC);
(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;
(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.参1-5:ABDCC 6-8:ABD
9、>10、x≥0 11、1;2;0 12、70 13、10 3
14、C 15、380 16、3