一、选择题(每小题3分,共30分)
1.下列表示天气符号的图形中,不是轴对称图形的是( )
A. B. C. D.
2.下列各组数中,不可能成为一个三角形三边长的是( )
A. 2,3,4 B. 2,5,7 C. 4,5,8 D. 6,8,10
3.五边形的对角线一共有( )
A. 2条 B. 3条 C. 5条 D. 10条
4.三角形的一个外角小于与它相邻的内角,这个三角形是( )
A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 不确定
5. 如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )
A. PO B. PQ C. MO D. MQ
6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙
7.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A. 作∠APB的平分线PC交AB于点C
B. 过点P作PC⊥AB于点C且AC=BC
C 取AB中点C,连接PC
D. 过点P作PC⊥AB,垂足为C
8.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( )
A. 12 B. 13 C. 14 D. 15
9.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )
A. B. C. D.
10.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
A. a+c B. b+c C. a﹣b+c D. a+b﹣c
二、填空题(每题3分,共18分)
11.在平面直角坐标系中,点A,点B关于x轴对称,点A坐标是(2,﹣8),则点B的坐标是_____.
12.等腰三角形的一个角是50°,则它的顶角等于 °.
13.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.
14.如图,五边形中,,、分别平分,则_______.
15.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=_____cm.
16.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.
三、解答题(共72分)
17.一个多边形的内角和是外角和的3倍,求这个多边形的边数.
18.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
19.如图,在△ABC中,AD,BE分别是∠BAC,∠ABC角平分线.
(1)若∠C=70°,∠BAC=60°,则∠BED的度数是 ;若∠BED=50°,则∠C的度数是 .
(2)探究∠BED与∠C的数量关系,并证明你的结论.
20.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分线.
(1)如图1,若E是AC边上的一个定点,在CD上找一点P,使PA+PE的值最小;
(2)如图2,若E是AC边上的一个动点,在CD上找一点P,使PA+PE的值最小,并直接写出其最小值.
21.(1)如果两个三角形两边和其中一边所对的角相等,则两个三角形全等,这是一个假命题,请画图举例说明;
(2)如图,在△ABC和△DEF中,AB=ED,BC=DF,∠BAC=∠DEF=120°,求证:△ABC≌△EDF.
22.如图,等边△ABC的边长为10cm,点D从点C出发沿CA向点A运动,点E从点B出发沿AB的延长线BF向右运动,已知点D,E都以1cm/s的速度同时开始运动,运动过程中DE与BC相交于点P,点D运动到点A后两点同时停止运动.
(1)当△ADE是直角三角形时,求D,E两点运动的时间;
(2)求证:在运动过程中,点P始终是线段DE的中点.
23.如图,△ABC的两条高AD,BE交于点F,∠ABC=45°,∠BAC=60°.
(1)求证:DF=DC;
(2)连接CF,求证:AB=AC+CF.
24.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.
(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;
(2)如图2,若AB=AC+BD,求∠ACB度数;
(3)如图2,若∠ACB=100°,求证:AB=AD+CD.
2018-2019学年湖北省武汉市八年级(上)期中数学试卷
一、选择题(每小题3分,共30分)
1.下列表示天气符号的图形中,不是轴对称图形的是( )
A. B. C. D.
【答案】C
【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.下列各组数中,不可能成为一个三角形三边长的是( )
A. 2,3,4 B. 2,5,7 C. 4,5,8 D. 6,8,10
【答案】B
【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.
3.五边形的对角线一共有( )
A. 2条 B. 3条 C. 5条 D. 10条
【答案】C
4.三角形的一个外角小于与它相邻的内角,这个三角形是( )
A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 不确定
【答案】B
5. 如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )
A. PO B. PQ C. MO D. MQ
【答案】
【解析】
解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选B.
6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙
【答案】B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选:B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A. 作∠APB的平分线PC交AB于点C
B. 过点P作PC⊥AB于点C且AC=BC
C. 取AB中点C,连接PC
D. 过点P作PC⊥AB,垂足为C
【答案】B
【解析】
【分析】利用判断三角形全等的方法判断即可得出结论.
【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,
∴点P在线段AB的垂直平分线上,符合题意;
B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;
C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,
∴点P在线段AB的垂直平分线上,符合题意;
D、利用HL判断出△PCA≌△PCB,∴CA=CB,
∴点P在线段AB的垂直平分线上,符合题意,
故选B.
【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.
8.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( )
A. 12 B. 13 C. 14 D. 15
【答案】A
【解析】
【分析】
根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.
【详解】解:∵D是BC的中点,BC=6,
∴BD=3,
由折叠的性质可知DN=AN,
∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.
故选A.
【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等
9.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.
【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.
故选A.
【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.
10.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
A. a+c B. b+c C. a﹣b+c D. a+b﹣c
【答案】D
【解析】
【分析】
根据垂直和平行线性质,证明角相等,证明△ABF≌△CDE(AAS)得到AF=CE=a,BF=DE=b,可得AD=AF+DE-EF=a+b-c.
【详解】如图,记AB与CD的交点为G,BF与CD的交点为H,
∵CE⊥AD,
BF⊥AD,
∴CE∥BF,
∴∠C=∠BHG,
∵AB⊥CD,
∴∠BGH=∠BFA=90〬,
∠B=∠B,
∴∠BHG=∠A,
∴∠A=∠C,
∠AFB=∠CED=90〬,
AB=CD,
∴△ABF≌△CDE(AAS),
∴AF=CE=a,
BF=DE=b,
∴AD=AF+DE-EF=a+b-c.
故选:D
【点睛】本题考核知识点:全等三角形的判定和性质. 解题关键点:熟练运用全等三角形的判定和性质.
二、填空题(每题3分,共18分)
11.在平面直角坐标系中,点A,点B关于x轴对称,点A的坐标是(2,﹣8),则点B的坐标是_____.
【答案】(2,8)
【解析】
【分析】
根据关于x轴的对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.
【详解】∵点A,点B关于x轴对称,点A的坐标是(2,-8),
∴点B的坐标是(2,8),
故答案为:(2,8).
【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标特点.
12.等腰三角形的一个角是50°,则它的顶角等于 °.
【答案】50°或80°
【解析】
试题分析:等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.
(1)当50°为顶角,顶角度数即为50°;
(2)当50°为底角时,顶角=.
考点:等腰三角形的性质.
13.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.
【答案】37
【解析】
【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.
【详解】∵AB=AC,∠A=32°,
∴∠ABC=∠ACB=74°,
又∵BC=DC,
∴∠CDB=∠CBD=∠ACB=37°,
故答案为:37.
【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
14.如图,在五边形中,,、分别平分,则_______.
【答案】60°
【解析】
【分析】
根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.
【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°-300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠CPD=180°-120°=60°.
故答案是:60°
【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.
15.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=_____cm.
【答案】6.
【解析】
【分析】
先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.
【详解】在Rt△ADB与Rt△ADC中,∵,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB.
∵S△ABC=AC•BF,∴AC•BF=3AB.
∵AC=AB,∴BF=3,∴BF=6.
故答案为:6.
【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.
16.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.
【答案】6
【解析】
【分析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,
∴MN=2,
∴AC=AN+NC=3,
∴BC=6,
故答案为:6.
【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(共72分)
17.一个多边形的内角和是外角和的3倍,求这个多边形的边数.
【答案】8
【解析】
内角和=360×3=1080,
18.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.
【答案】证明见解析.
【解析】
【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
【详解】∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE,
在△ABF和△DCE中
,
∴△ABF≌△DCE(SAS),
∴∠GEF=∠GFE,
∴EG=FG.
【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
19.如图,在△ABC中,AD,BE分别是∠BAC,∠ABC的角平分线.
(1)若∠C=70°,∠BAC=60°,则∠BED的度数是 ;若∠BED=50°,则∠C的度数是 .
(2)探究∠BED与∠C的数量关系,并证明你的结论.
【答案】(1)55°,80°;(2)∠BED=90°﹣∠C
【解析】
【分析】
(1)根据三角形的内角和得到∠ABC=50°,根据角平分线的定义得到∠CAD=∠BAC=30°,∠DBE=∠ABC=25°,根据三角形的内角和即可得到结论;
(2)根据角平分线的定义和三角形的内角和即可得到结论.
【详解】(1)∵∠C=70°,∠BAC=60°,
∴∠ABC=50°,
∵AD,BE分别是∠BAC,∠ABC的角平分线,
∴∠CAD=∠BAC=30°,∠DBE=∠ABC=25°,
∵∠ADB=∠DAC+∠C=100°,
∴∠BED=180°﹣100°﹣25°=55°,
∵∠BED=50°,
∴∠ABE+∠BAE=50°,
∴∠ABC+∠BAC=2×50°=100°,
∴∠C=80°;
故答案为:55°,80°;
(2)∵AD,BE分别是∠BAC,∠ABC的角平分线,
∴∠ABE=∠ABC,∠BAE=∠BAC,
∵∠BED=∠ABE+∠BAE=(∠ABC+∠BAC)=(180°﹣∠C)=90°﹣∠C.
【点睛】本题考查了三角形的内角和,角平分线的定义,三角形的外角的性质,熟练掌握三角形的内角和是解题的关键.
20.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分线.
(1)如图1,若E是AC边上的一个定点,在CD上找一点P,使PA+PE的值最小;
(2)如图2,若E是AC边上一个动点,在CD上找一点P,使PA+PE的值最小,并直接写出其最小值.
【答案】(1)点P位置见解析;(2)点P位置见解析,5.
【解析】
【分析】
(1)如图,过D作DF⊥BC于F,过F作EF⊥AC交CD于P,于是得到结论;
(2)如图,过D作DF⊥BC于F,过F作EF⊥AC交CD于P,则此时,PA+PE的值最小;PA+PE的最小值=EF,根据角平分线的性质得到DA=DF,即点A与点F关于CD对称,根据直角三角形的性质即可得到结论.
【详解】(1)如图,
过D作DF⊥BC于F,过F作EF⊥AC交CD于P,
则此时,PA+PE的值最小;
点P即为所求;
(2)如图,过D作DF⊥BC于F,过F作EF⊥AC交CD于P,
则此时,PA+PE的值最小;
PA+PE的最小值=EF,
∵CD是角平分线,∠BAC=90°,
∴DA=DF,
即点A与点F关于CD对称,
∴CF=AC=10,
∵∠ACB=30°,
∴EF=CF=5.
【点睛】本题考查了轴对称-最短路线问题,含30°角的直角三角形的性质,角平分线的性质,正确的作出点P的位置是解题的关键.
21.(1)如果两个三角形两边和其中一边所对的角相等,则两个三角形全等,这是一个假命题,请画图举例说明;
(2)如图,在△ABC和△DEF中,AB=ED,BC=DF,∠BAC=∠DEF=120°,求证:△ABC≌△EDF.
【答案】(1)答案见解析;(2)证明见解析
【解析】
【分析】
(1)根据题意画出图形,证明两个三角形不全等即可;
(2)作GB⊥CA交CA的延长线于G,作DH⊥FE交FE的延长线于H,分别证明△ABG≌△EDH,Rt△CBG≌Rt△FDH,根据全等三角形的性质得到∠C=∠F,利用AAS定理证明即可.
详解】(1)如图1,
△ABD和△ABC中,
AB=AB,∠B=∠B,AD=AC,
△ABD和△ABC不全等;
(2)如图2,
作GB⊥CA交CA的延长线于G,作DH⊥FE交FE的延长线于H,
在△ABG和△EDH中,
,
∴△ABG≌△EDH(AAS)
∴BG=DH,
在Rt△CBG和Rt△FDH中,
,
∴Rt△CBG≌Rt△FDH(HL)
∴∠C=∠F,
在△ABC和△EDF中,
,
∴△ABC≌△EDF(AAS).
【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
22.如图,等边△ABC的边长为10cm,点D从点C出发沿CA向点A运动,点E从点B出发沿AB的延长线BF向右运动,已知点D,E都以1cm/s的速度同时开始运动,运动过程中DE与BC相交于点P,点D运动到点A后两点同时停止运动.
(1)当△ADE是直角三角形时,求D,E两点运动的时间;
(2)求证:在运动过程中,点P始终是线段DE的中点.
【答案】(1)s;(2)证明见解析
【解析】
【分析】
(1)经过分析当△ADE是直角三角形时,只有∠ADE=90°的情况,此时∠AED=30°.用运动时间t表示出AD和AE,根据30度直角三角形的性质构造关于t的方程即可求解;
(2)过D点作DK∥AB交BC于点K,证明△DKP≌△EBP即可说明点P始终是线段DE的中点.
【详解】(1)当△ADE是直角三角形时,只有∠ADE=90°的情况,
∵∠A=60°,
∴∠AED=30°,
∴AE=2AD,
设D点运动时间为t,则E点运动时间也为t,
∴AD=10﹣t,AE=10+t,
∴10+t=2(10﹣t),解得t=,
所以当△ADE是直角三角形时,D,E两点运动的时间为秒;
(2)过点D作DK∥AB交BC于点K,
∵△ABC是等边三角形,
∴∠C=∠CDK=∠CKD=60°,
∴CD=DK=CK,∠DKP=∠EBP=120°,
设D、E运动时间为t秒,则CD=BE=t,
△DKP和△EBP中,
∴△DKP≌△EBP(AAS),
∴PD=PE,
所以P始终为DE中点.
【点睛】本题主要考查了等边三角形、全等三角形的判定和性质,用运动时间t正确表示出对应线段长度是解题的关键.
23.如图,△ABC的两条高AD,BE交于点F,∠ABC=45°,∠BAC=60°.
(1)求证:DF=DC;
(2)连接CF,求证:AB=AC+CF.
【答案】(1)证明见解析;(2)证明见解析
【解析】
【分析】
(1)欲证明DF=DC,只要证明△BDF≌△ADC即可解决问题;
(2)延长FE到K,使得EK=EF,连接CF.想办法证明CF=FK,BK=BA即可解决问题.
【详解】(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠ABC=45°,
∴∠DBA=∠DAB=45°,
∴BD=DA,
∵BE⊥AC,
∴∠BEC=90°,
∴∠DAC+∠C=90°,∠CBE+∠C=90°,
∴∠DAC=∠DBF,
在△BDF和△ADC中,
,
∴△BDF≌△ADC(ASA),
∴DF=DC;
(2)延长FE到K,使得EK=EF,连接CF,
∵∠BAC=60°,∠ABC=45°,
∴∠ACB=180°﹣60°﹣45°=75°,
∵DF=DC,∠FDC=90°,
∴∠FCD=∠DFC=45°,
∴∠ECF=30°,
∵∠CEF=90°,
∴CF=2EF,
∵FK=2EF,
∴CF=FK,
∵AE⊥FK,EF=EK,
∴AF=AK,
∴∠K=∠AFE,∠EAF=∠EAF,
∵∠ADC=90°,∠ACD=75°,
∴∠DAC=15°,
∴∠EAF=∠EAK=15°,
∴∠K=90°﹣15°=75°,
∴∠BAK=∠BAD+∠DAK=75°,
∴∠BAK=∠K,
∴BA=BK,
∴AB=BF+FK=BF+CF.
【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.
(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;
(2)如图2,若AB=AC+BD,求∠ACB的度数;
(3)如图2,若∠ACB=100°,求证:AB=AD+CD.
【答案】(1)AB=AC+CD;(2)108°;(3)证明见解析
【解析】
【分析】
(1)如图1,过D作DM⊥AB于M,根据轴对称的性质得到CA=CB,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;
(2)设∠ACB=α,则∠CAB=∠CBA=90°-α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD=α,根据三角形的内角和即可得到结论;
(3)如图2,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA=40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.
【详解】(1)如图1,过D作DM⊥AB于M,
∵A,B两点关于y轴对称,
∴CA=CB,
∵∠ACB=90°,AD是角平分线,
∴CD=MD,∠ABC=45°,
∴∠BDM=45°,
∴BM=DM,
∴BM=CD,
在RT△ADC和RT△ADM中,,
∴RT△ADC≌RT△ADM(HL),
∴AC=AM,
∴AB=AM+BM=AC+CD,
即AB=AC+CD;
(2)设∠ACB=α,则∠CAB=∠CBA=90°﹣α,
在AB上截取AK=AC,连结DK,
∵AB=AC+BD,
∴BK=BD,
∵AD是角平分线,
∴在△CAD和△KAD中,,
∴△CAD≌△KAD(SAS),
∴∠ACD=∠AKD=α,
∴∠BKD=180°﹣α,
∵BK=BD,
∴∠BDK=180°﹣α,
在△BDK中,
180°﹣α+180°﹣α+90°﹣α=180°,
∴α=108°,
∴∠ACB=108°;
(3)如图2,在AB上截取AH=AD,连接DH,
∵∠ACB=100°,AC=BC,
∴∠CAB=∠CBA=40°,
∵AD是角平分线,
∴∠HAD=∠CAD=20°,
∴∠ADH=∠AHD=80°,
在AB上截取AK=AC,连接DK,
由(1)得,△CAD≌△KAD,
∴∠ACB=∠AKD=100°,CD=DK,
∴∠DKH=80°=∠DHK,
∴DK=DH=CD,
∵∠CBA=40°,
∴∠BDH=40°,
∴DH=BH,
∴BH=CD,
∵AB=AH+BH,
∴AB=AD+CD.
【点睛】本题考查了全等三角形的判定和性质,轴对称的性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.下载本文