1.(本小题共13分)
在平面直角坐标系中,动点到定点的距离比点到轴的距离大,设动点的轨迹为曲线,直线交曲线于两点,是线段的中点,过点作轴的垂线交曲线于点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:曲线在点处的切线与平行;
(Ⅲ)若曲线上存在关于直线对称的两点,求的取值范围.
2.(本小题满分14分)
已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.
3. (本小题共13分)
已知椭圆的离心率为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)试用表示△的面积,并求面积的最大值.
4. (本小题共14分)
已知椭圆经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.
5.(本小题共14分)
已知点,,动点P满足,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点,使得成立,求实数m的取值范围.
6.(本小题满分14分)
已知椭圆经过点,离心率为.过点的直线与椭圆交于不同的两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)设直线和直线的斜率分别为和,求证:为定值.
7.(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
8. (本小题满分14分)
已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。
(1)求椭圆C的方程;
(2)求线段MN长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上的T满足:的面积为。试确定点T的个数。
9.(本小题满分14分)
已知点是离心率为的椭圆:上的一点.斜率为的直线
交椭圆于、两点,且、、三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、的斜率之和为定值.
10. (本小题13分)
已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点与抛物线的焦点重合,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线与椭圆交于、两点,
且椭圆的右焦点恰为的垂心(三条
高所在直线的交点),若存在,求出直线的方程,
| 若不存在,请说明理由. |