视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
五年级奥数 第二讲 质数、合数和分解质因数
2025-10-02 14:04:18 责编:小OO
文档
第二讲 质数、合数和分解质因数

一、基本概念和知识

  1.质数与合数

  一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

  一个数除了1和它本身,还有别的约数,这个数叫做合数。

  要特别记住:1不是质数,也不是合数。

  2.质因数与分解质因数

  如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  例:把30分解质因数。

  解:30=2×3×5。

  其中2、3、5叫做30的质因数。

  又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、例题

例1 三个连续自然数的乘积是210,求这三个数.

  解:∵210=2×3×5×7

  ∴可知这三个数是5、6和7。

例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?

  解:把40表示为两个质数的和,共有三种形式:

  40=17+23=11+29=3+37。

  ∵17×23=391>11×29=319>3×37=111。

  ∴所求的最大值是391。

  答:这两个质数的最大乘积是391。

例3 自然数1234567是质数,还是合数?为什么?

  解:1234567是合数。

  因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4 连续九个自然数中至多有几个质数?为什么?

  解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

  如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

  综上所述,连续九个自然数中至多有4个质数。

例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

  解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,

  这些数中质因数2、3、5、7各共有2个,所以如把14

  (=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。

  这样14×15=210=5×6×7。

  这五个数可以分为14和15,5、6和7两组。

例6 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。

分析 先大概估计一下,30×30×30=27000,远小于42560.40×40×40=000,远大于42560.因此,要求的三个自然数在30~40之间。

  解:42560=26×5×7×19

  =25×(5×7)×(19×2)

  =32×35×38(合题意)

  要求的三个自然数分别是32、35和38。

例7 有3个自然数a、b、c.已知a×b=6,b×c=15,

  a×c=10.求a×b×c是多少?

  解:∵6=2×3,15=3×5,10=2×5。

  (a×b)×(b×c)×(a×c)

  =(2×3)×(3×5)×(2×5)

  ∴a2×b2×c2=22×32×52

  ∴(a×b×c)2=(2×3×5)2

  a×b×c=2×3×5=30

  在例7中有a2=22,b2=32,c2=52,其中22=4,32=9,52=25,像4、9、25这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。

  如.12=1,22=4,32=9,42=16,…,112=121,122=144,…其中1,4,9,16,…,121,144,…都叫做完全平方数.

  下面让我们观察一下,把一个完全平方数分解质因数后,各质因数的指数有什么特征。

  例如:把下列各完全平方数分解质因数:

  9,36,144,1600,275625。

  解:9=32 36=22×32 144=32×24

  1600=26×52 275625=32×54×72

  可见,一个完全平方数分解质因数后,各质因数的指数均是偶数。

  反之,如果把一个自然数分解质因数之后,各个质因数的指数都是偶数,那么这个自然数一定是完全平方数。

  如上例中,36=62,144=122,1600=402,275625=5252。

例8 一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。

分析 ∵a与1080的乘积是一个完全平方数,

  ∴乘积分解质因数后,各质因数的指数一定全是偶数。

  解:∵1080×a=23×33×5×a,

  又∵1080=23×33×5的质因数分解中各质因数的指数都是奇数,

  ∴a必含质因数2、3、5,因此a最小为2×3×5。

  ∴1080×a=1080×2×3×5=1080×30=32400。

  答:a的最小值为30,这个完全平方数是32400。

例9 问360共有多少个约数?

分析 360=23×32×5。

  为了求360有多少个约数,我们先来看32×5有多少个约数,然后再把所有这些约数分别乘以1、2、22、23,即得到23×32×5(=360)的所有约数.为了求32×5有多少个约数,可以先求出5有多少个约数,然后再把这些约数分别乘以1、3、32,即得到32×5的所有约数。

  解:记5的约数个数为Y1,

  32×5的约数个数为Y2,

  360(=23×32×5)的约数个数为Y3.由上面的分析可知:

  Y3=4×Y2,Y2=3×Y1,

  显然Y1=2(5只有1和5两个约数)。

  因此Y3=4×Y2=4×3×Y1=4×3×2=24。

  所以360共有24个约数。

  说明:Y3=4×Y2中的“4”即为“1、2、22、23”中数的个数,也就是其中2的最大指数加1,也就是360=23×32×5中质因数2的个数加1;Y2=3×Y1中的“3”即为“1、3、32”中数的个数,也就是23×32×5中质因数3的个数加1;而Y1=2中的“2”即为“1、5”中数的个数,即23×32×5中质因数5的个数加1.因此

  Y3=(3+1)×(2+1)×(1+1)=24。

  对于任何一个合数,用类似于对23×32×5(=360)的约数个数的讨论方式,我们可以得到一个关于求一个合数的约数个数的重要结论:

  一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。

例10 求240的约数的个数。

  解:∵240=24×31×51,

  ∴240的约数的个数是

  (4+1)×(1+1)×(1+1)=20,

  ∴240有20个约数。

  请你列举一下240的所有约数,再数一数,看一看是否是20个?

习题二

  1.边长为自然数,面积为105的形状不同的长方形共有多少种?

  2.11112222个棋子排成一个长方阵.每一横行的棋子数比每一竖列的棋子数多1个.这个长方阵每一横行有多少个棋子?

  3.五个相邻自然数的乘积是55440,求这五个自然数。

  4.自然数a乘以338,恰好是自然数b的平方.求a的最小值以及b。

  5.求10500的约数共有多少个?

习题二解答

  1.∵105=3×5×7,

  105=1×105=3×35=5×21=7×15,

  ∴共有4种。

  2.分析

  每一横行棋子数比每一竖列棋子数多1个。

  横行数与竖列数应是两个相邻的自然数.

  解:11112222=3333×3334

  答案为3334。

  3.7、8、9、10、11。

  4.分析

  ∵自然数a乘以338,恰好是自然数b的平方,

  ∴a与338的积分解质因数以后,每个质因数的个数之和都是偶数。

  解:∵338=2×13×13,

  ∴a=2,b=2×13=26。

  5.解:∵10500=22×3×53×7,

  又∵(2+1)×(1+1)×(3+1)×(1+1)=48。

  ∴10500的约数共有48个.下载本文

显示全文
专题