一、我国模具制造技术的发展现状
模具是制造业的重要基础装备,它是“无以伦比的效益放大器”。没有高水平的模具,也就没有高水平的工业产品,因此模具技术也成为衡量一个国家产品制造水平的重要标志之一。正因为模具的重要性及其在国民经济中的重要地位。
由于模具行业的技术进步,模具水平得以提高 ,模具国产化取得了可喜的成就。历年来进口模具不断增长的势头有所控制,模具出口稳步增长。
1.冲模
在新产品试制和小批量生产冲压件中,已普遍采用了简易冲模结构。这种冲模不仅结构简单,而且还具有制造方便、成本低廉,并能满足一定的加工质量要求。
日前,简易冲模主要有橡皮冲模、聚氨酯橡胶冲模,钢皮冲模,薄板冲模、低熔点合金冲模、锌合金冲模及组合冲模等多种结构形式。
冷冲压加工在批量生产中得到了广泛的应用,在现代工业生产中占有十分重要的地位,是国防工业及民用工业生产中必不可少的加工方法。冲压生产率高和材料利用率高。生产的制件精度、复杂程度高、一致性高。
大型冲模覆盖件模具为代表。我国已能生产部分轿车覆盖件模具。如东风汽车公司冲模厂,已设计制造了富康轿车部分内覆盖件模具。一汽模具中心生产了捷达王轿车外覆盖件模具。轿车覆盖件模具,具有设计和制造难度大,质量和精度要求高的特点。可代表覆盖件模具的水平。标志冲模技术先进水平的多工位级进模和多功能模具,是我国重点发展的精密模具品种。有代表性的是集机电一体化的铁芯精密自动叠片多功能模具,已达到国际水平。如南京长江机器制造厂的电机铁芯自动叠铆硬质合金多工位级进模具有自动冲切、叠压、铆合、计数、分组,转子铁芯扭斜,安全保护等功能,凹模采用拼块式,零备件可互换。常州宝马集团公司的步进电机定转子带双回叠片硬质合金级进模。
冲压成形加工必须具备相应的模具,而模具是技术密集型产品,其具有难加工、精度高、技术要求高、生产成本高(约占产品成本的10%~30%)的特点。所以,只有在冲压零件生产批量大的情况下,冲压成形加工的优点才能充分体现,从而获得好的经济效益。
2.塑料膜
一种用于压塑、挤塑、注射、吹塑和低发泡成型的组合式塑料模具,它主要包括由凹模组合基板、凹模组件和凹模组合卡板组成的具有可变型腔的凹模,由凸模组合基板、凸模组件、凸模组合卡板、型腔截断组件和侧截组合板组成的具有可变型芯的凸模。模具凸、凹模及辅助成型系统的协调变化。可加工不同形状、不同尺寸的系列塑件。
它由几组零件部分构成,这个组合内有成型模腔。注塑时,模具装夹在注塑机上,熔融塑料被注入成型模腔内,并在腔内冷却定型,然后上下模分开,经由顶出系统将制品从模腔顶出离开模具,最后模具再闭合进行下一次注塑,整个注塑过程是循环进行的。
塑料模应用最广泛的一类模具。近年来,我国塑料模有长足的进步。在大型塑料模方面,已能生产34〃大屏幕彩电塑壳模具,6kg大容量洗衣机全套塑料模具及汽车保险杠和整体仪表板等的塑料模具。模具重要可达10-20吨。在精密塑料模具方面,能生产多型腔小模数齿轮模具和600腔塑封模具,还能生产厚度仅为0.08mm的一模两腔的航空杯模具和难度较高的塑料门窗挤出模等。
3.压铸模
压铸模锻工艺是一种在专用的压铸模锻机上完成的工艺。它的基本工艺过程是:金属液先低速或高速铸造充型进模具的型腔内,模具有活动的型腔面,它随着金属液的冷却过程加压锻造,既消除毛坯的缩孔缩松缺陷,也使毛坯的内部组织达到锻态的破碎晶粒。毛坯的综合机械性能得到显著的提高。
压铸模是压铸生产三大要素之一,结构正确合理的模具是压铸生产能否顺利进行的先决条件,并在保证铸件质量方面(下机合格率)起着重要的作用。
正确选用各工艺参数是获得优质铸件的决定因素,而模具又是能够正确选择和调整各工艺参数的前提,模具设计实质上就是对压铸生产中可能出现的各种因素预计的综合反映。
在应用中汽车和摩托车工业的快速发展,推动了压模生产的发展。汽车发动机缸罩、盖板、变速器壳体和摩托车发动机缸机、齿轮箱壳体、制动器、轮毂等铝合金铸件模具以及自动扶梯级压铸模等,我国均已能生产。技术水平有所提高,使汽车、摩托车上配套的铝合金压铸模大部分实现了国产化。在模具设计时,注意解决热平衡问题,合理确定浇注系统和冷动系统,并根据制作要求,采用了液压轴芯和二次增压等结构。总体水平有了较大提高。压铸模制造精度可达0.02-0.05mm(国外为0.01-0.03mm),型腔表面粗糙度为Ra0.4-0.2μ m(国外为Ra0.02-0.01μm) 。
4.模具材料的热处理
模具材料的质量、性能、品种和供货是否及时,对模具的质量和使用寿命以及经济效益有着直接的重大影响。大量使用的模具材料为模具钢,年消耗量在10万吨以上。近年来,国内一些模具钢生产企业已相继建成和引进了一些先进工艺设备,使国内模具钢品种规格不合理状况有所改善,模具钢质量有较大程度的提高。
另外,还需要研究适应玻璃、陶瓷、耐火砖和地砖等成形模具用材系列。模具热处理是关系能否充分保证模具钢性能的关键环节。国内大部分企业在模具淬火时仍采用盐熔炉或电炉加热。由于模具热处理工艺执行不严,处理质量不高。而且不稳定,直接影响模具使用寿命和质量。近年来,真空热处理炉有了很大发展,正在推广使用。
5.模具制造技术的相关技术
模具制造的相关技术与工艺的发展,对模具水平的提高起到了重要作用。
模具抛光技术引起重视,机械磨抛光、超声波抛光、电化学抛光及述几种方法的复合抛光,已开发出专用机械,专用工具,得到广泛的应用。挤压珩磨抛光已用应用。但面不广,大型高效自动抛光专用设备有待开发。
模具花纹的蚀刻技术,工艺水平提高较快,能制作各类模具的装饰纹,且仿真性越来越好。
二、与国外技术的差距
1.生产与需求的关系
工业发展水平的不断提高,工业产品更新速度加快,对模具的要求越来越高,尽管改革开放以来,模具工业有了较大发展,但无论是数量还是质量仍满足不了国内市场的需要,目前满足率只能达到70%左右。造成产需矛盾突出的原因,一是专业化、标准化程度低,除少量标准件外购外,大部分工作量均需模具厂去完成。加工企业管理的上的约束,造成模具制造周期长,不能适应市场要求。二是设计和工艺技术落后,如模具CAD/CAM技术采用不普遍,加工设备数控化率低等,亦造成模具生产效率不高、周期长。
2.产品水平差距
衡量模具产品水平,主要有模具加工的制造精度和表面粗糙度,加工模具的复杂程度、模具的使用寿命和制造周期等。国内外模具产品水平仍有很大差距。如下表:
模具制造精度
| 项目 | 国内 | 国外 |
| 1、数量模型腔精度 | 0.005~0.01mm Ra0.10~0.050μm(δ11-δ12) | 0.02~0.05mm Ra0.20μm(δ10) |
| 2、压铸模型腔精度 | 0.01~0.03mm Ra0.20~0.10μm(δ10-δ11) | 0.02~0.05mm Ra0.40μm(δ9) |
| 3、冷冲模尺寸精度 | 0.003~0.005mm Ra0.20μm以下(δ10以上) | 0.01~0.02mm Ra01.60-0.80μm(δ7-δ8) |
| 4、煅模 | 0.02~0.03mm Ra0.40μm以下(δ9以上) | 0.05~0.10mm Ra1.60μm(δ7) |
| 5、级进模步距精度 | 0.0023~0.005mm | 0.003~0.01mm |
| 项目 | 国外 | 国内 |
| 1、中型压铸模 | 1-2个月 | 3-6个月 |
| 2、中型塑料模 | 1个月左右 | 2-4个月 |
| 3、高精度级进模 | 3-4个月 | 2-4个月 |
| 4、汽车覆盖件模 | 6-7个月 | 12个月 |
| 项目 | 国外(寿命) | 国内(寿命) | |
| 压铸模 | 锌、锡压铸模 | 100-300万次 | 20-30万次 |
| 铝压铸模 | 100万次以上 | 20万次 | |
| 铜压铸模 | 10万次 | 5000-1万次 | |
| 黑色金属压铸模 | 0.8-2万次 | 1500次 | |
| 塑料模 | 非淬火钢模 | 10-60万次 | 10-30万次 |
| 淬火钢模 | 160-300万次 | 50-100万次 | |
| 冷冲模 | 合金钢制模总 | 500-1000万次 | 100-400万次 |
| 硬质合金制冲模 | 总2亿次 500-1000万次/刃磨一次 | 总6000万次-1亿次 100-300万次/刃磨一次 | |
| 锻模 | 普通锻模 | 2.5万次 | 0.8-1万次 |
我国机床工具行业已可提供比较成套的高精度模具加工设备,如:加工中心、数控铣床、数控仿形铣床、电加工机床、座标磨床、光曲磨床、三座标测量机等。但在加工和定位精度,加工表面粗糙度,机床刚性,稳定性,可靠性,刀具和附件的配套性方面,和国外相比,仍有较大差距。
三、模具制造技术改进研究
1.开发模具的抛光技术
模具常用的抛光方法有:机械抛光、化学抛光、电解抛光、超声波抛光、流体抛光、磁研磨抛光。在塑料模具加工中所说的抛光与其他行业中所要求的表面抛光有很大的不同,严格来说,模具的抛光应该称为镜面加工。它不仅对抛光本身有很高的要求并且对表面平整度、光滑度以及几何精确度也有很高的标准。由于电解抛光、流体抛光等方法很难精确控制零件的几何精确度,而化学抛光、超声波抛光、磁研磨抛光等方法的表面质量又达不到要求,所以精密模具的镜面加工还是以机械抛光为主。但由于机械抛光主要还是由人工完成,不仅效率低(约占整个模具制造周期的1/3),且工人劳动强度大,质量不稳定,制约了我国模具加工向更高层次发展。因此,研究抛光的自动化、智能化是促进我国模具向更好方向发展的重要课题。
目前,国内模具抛光至Ra0.05μm的抛光设备、磨具磨料及工艺,可 以基本满足需要,而要抛至Ra0.025μm的镜面抛光设备、磨具磨料及工艺尚处摸索阶段。随着镜面注塑模具在生产中的大规模应用,模具抛光技术就成为模 具生产的关键问题。由于国内抛光工艺技术及材料等方面还存在一定问题,所以如傻瓜相机镜头注塑模、CD、VCD光盘及工具透明度要求高的注塑模仍有很大一 部分依赖进口。罗百辉指出,模具表面抛光不单受抛光设备和工艺技术的影响,还受模具材料镜面度的影响,这一点还没有引起足够的重视,也就是说,抛光本身受 模具材料的制约。
2.CAD/CAM/CAE技术的应用
模具 CA D/CAM/CAE技术是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程。它以计算机软件的形式,为用户提供一种有效的辅助工具,使工程技术人员能借助于计算机对产品、模具结构、成形工艺、数控加工及成本等进行设计和优化。模具CAD/CAM/CAM技术能显著缩短模具设计与制造周期,降低生产成本,提高产品质量。在现阶段,模具设计和制造在很大程度上仍然依靠着模具工作者的经验,仅凭计算机的数值计算功能去完成诸如模具设计方案的选择、工艺参数与模具结构的优化、成型缺陷的诊断以及模具成形性能的评价是不现实的。新一代模具CAD/CAE/CAM系统正在利用KBE(基于知识的工程)技术进行脱胎换骨的改造。如UG-II中所提供的人工智能模块KF (Knowledge Fusion)。利用KF可将设计知识融人系统之中,以便进行图形的识别与推理。
罗百辉 表示,新一代模具软件应建立在从模具设计实践中归纳总结出的大量知识上。这些知识经过了系统化和科学化的整理,以特定的形式存储在工程知识库中并能方便地 被模具所调用。在智能化软件的支持下,模具CAD不再是对传统设计与计算方法的模仿,而是在先进设计理论的指导下,充分运用本领域专家的丰富知识和成功经 验,其设计结果必然具有合理性和先进性。CAD/CAM技术能使工程师借助于计算机对产品结构、成型工艺、数控加工及成本等进行设计和优化,无疑可以有效提高模具设计和制造的水平和质量,缩短模具的开发和设计周期。与模具行业的快速增长相对应的是,模具行业CAD/CAM/CAE市场竞争也日益激烈。目前,CAM软件的竞争主要在加工效率与加工质量方面,随着加工手段的多样化和数控设备的快速发展,对CAM软件的应用范畴也提出了新的要求。CAD/CAM/CAE与模具加工形成了相互促进的局面。
3. 逐步推广高速切削
高速切削的高效率不光体现在减少多少机床加工时间,实际上是减少整体工序时间。采用更高的切削速度,精加工时更少的加工余量,更密的刀轨以及更少的切深,特别是在自由曲面上(切深一般在0.02至0.1mm)使用细小直径(如0.3-0.8mm )刀具时,切深更小0.008-0.02mm),精细、紧密的刀轨一般均会大大提高加工表面的光洁度。以快速精细的轻切削代替常规的缓慢的重切削,会大大简化以后的工序。高速铣削必须与相应的软件、加工工艺、刀具及其夹紧头相配合。国外是联合开发,企业提供费用,大学、研究所提供理论分析,共同讨论后企业制造,然后又给大学实验室验证,分析改进,重新制造,再改进,用户试用,分析改进。
高速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺流程,甚至可用高速切削加工替代原来的全部工序。高速加工技术除可应用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电极加工、快速样件制造等方面也得到了广泛应用。大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费30%,模具表面加工精度可达1 m,刀具切削效率可提高1倍。随着对高速加工技术研究的不断深入,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制造中。
4.优质新型材料
在整个模具价格构成中,材料所占比重不大,一般在20%一30%之间,模具用材料包括的范围很广,从一般的碳素结构钢、合金结构钢、碳素工具钢、合金工具钢、高速工具钢、不锈钢、马氏体时效钢到硬质合金、难熔合金、高温合金、非铁金属等都可选用,因此选用优质钢材和应用的表面处理技术来提高模具的寿命就显得十分必要。对于模具钢来说,要采用电渣重熔工艺,努力提高钢的纯净度、等向性、致密度和均匀性及研制更高性能或有特殊性能的模具钢。在模具制造的成本中,材料费用往往只占模具成本的20%左右,但模具工业的竞争就是模具使用效率的竞争,而不是以模具材料低价位来取胜,因此对于要求较高的长寿命模具,在选用模具材料时往往需要精益求精。
模具热处理和表面处理是能否充分发挥模具钢材性能的关键节。模具热处理的发展方向是采用真空热处理。模具表面处理除完善普及常用表面处理方法,即扩渗如:渗碳、渗氮、渗硼、渗铬、渗钒外,应发展设备昴贵、工艺先进的气相沉积(TiN.TiC等)、等离子喷涂等技术。
5.电火花加工
电火花加工在铸造模具制造中是不可缺少的工艺方法。电火花加工对于淬火后的深、小型腔的加工仍是有效的方案。电火花是一种自激放电,其特点如下: 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。由于电火花加工直接利用电能和热能来去除金属材料,与工件材料的强度和硬度等关系不大,因此町以用软的工具电极加工硬的工件,实现“以柔克刚”。
从国外的电加工机床来看,不论从性能、工艺指标、智能化、自动化程度都已达到了相当高的水平,目前国外的新动向是进行电火花铣削加工技术(电火花创成加工 技术)的研究开发,这是一种替代传统的用成型电极加工型腔的新技术,它是用高速旋转的简单的管状电极作三维或二维轮廓加工(像数控铣一样),因此不再需要 制造复杂的成型电极,这显然是电火花成形加工领域的重大发展。
在电火花加工技术进步的同时,电火花加工的安全和防护技术越来越受到人们的重视,许多电加工机床都考虑了安全防护技术。目前欧共体已规定没有“CE”标志 的机床不能进入欧共体市场,同时国际市场也越来越重视安全防护技术的要求。
6.气体辅助注射模具
气体辅助注射成形是一种塑料成形的新工艺,它具有注射压力低、制品翘曲变形少、表面好以及易于成形壁厚差异较大的制品等优点,可在保证产品质量的前提下,大幅度降低成本。国外,已经较成熟。国内目前在汽车和家电行业中正逐步推广使用。气体辅助注射成形包括塑料熔体注射和气体(一般均采用氮气)注射成形两面部份,比传统的普通注射工艺有
更多的工艺参数需要确定和控制,而且气体辅助注射常用于较复杂的大型制品,模具设计和控制的难度较大,因此,开发气体辅助成型流动分析软件,显得十分重要。
为了确保塑料件精度,将继续研究发展高压注射成型工艺与模具以及注射压缩成型工艺与模具。在注射成形中,影响成型件精度的最大因素是成型收缩,高压注射成型可强制树脂收缩率,增加塑件尺寸的稳定性。模具要求刚性好、耐高压。特别是精密模具的型腔应淬火,浇口密封性好,模具能准确控制。注射压缩成型技术,是在模具预先半开模状态或者在锁模力保持中压或低压,模具在设定的打开量下,注射溶融树脂,然后以最大的锁模力进行压缩成型,其效果是:
(1)成型件局部内应力小;
(2)可得到缩孔少的厚壁成型件;
(3)对于塑件狭窄的部件也可注入树脂;
(4)用小注射力能得到优良制品。
该类模具的理想结构是:
(1)注射时树脂以低的流动阻力迅速充填型腔;
(2)充填完后能立即遮断浇口部;
(3)压缩作用应仅限于型腔部。下载本文