typedef struct node {int data; struct node *next;}lklist;
void intersection(lklist *ha,lklist *hb,lklist *&hc)
{
lklist *p,*q,*t;
for(p=ha,hc=0;p!=0;p=p->next)
{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;
if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}
}
}
2、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath
3、给出折半查找的递归算法,并给出算法时间复杂度性分析。
4、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j] //n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中. {i=a; j=d; flag=0; //flag是成功查到x的标志 while(i<=b && j>=c) if(A[i][j]==x) {flag=1;break;} else if (A[i][j]>x) j--; else i++; if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型. else printf(“矩阵A中无%d 元素”,x); }算法search结束。 [算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x5、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p 和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。 typedef struct {BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问 }stack; stack s[],s1[];//栈,容量够大 BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。 {top=0; bt=ROOT; while(bt!=null ||top>0) {while(bt!=null && bt!=p && bt!=q) //结点入栈 {s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下 if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点 {for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存 if(bt==q) //找到q 结点。 for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配 {pp=s[i].t; for (j=top1;j>0;j--) if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);} } while(top!=0 && s[top].tag==1) top--; //退栈 if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历 }//结束while(bt!=null ||top>0) return(null);//q、p无公共祖先 }//结束Ancestor 6、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。 7、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。 void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2) //将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。 {if(h1>=l1) {post[h2]=pre[l1]; //根结点 half=(h1-l1)/2; //左或右子树的结点数 PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列 PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列 } }//PreToPost 32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。 LinkedList head,pre=null; //全局变量 LinkedList InOrder(BiTree bt) //中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head {if(bt){InOrder(bt->lchild); // 中序遍历左子树 if(bt->lchild==null && bt->rchild==null) //叶子结点 if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点 else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表 InOrder(bt->rchild); //中序遍历左子树 pre->rchild=null; //设置链表尾 } return(head); } //InOrder 时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n) 8、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。 void quickpass(int r[], int s, int t) { int i=s, j=t, x=r[s]; while(i r[i]=x; } 9、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。 10、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。 设当n=m-1时结论成立,现证明当n=m时结论成立。 设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。 若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。 若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。 最后,当1可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和 {Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。 11、二路插入排序是将待排关键字序列r[1..n]中关键字分二路分别按序插入到辅助向量d[1..n]前半部和后半部(注:向量d可视为循环表),其原则为,先将r[l]赋给d[1],再从r[2] 记录开始分二路插入。编写实现 二路插入排序算法。 12、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。 #define MAX 100 typedef struct Node {char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main(int argc,int **argv) { TNODE *root; if(argc<3) exit 0; strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred)); postorder(root); } TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______; for((2)_______ ; rpos ptr->llink=restore(ppos+1, (4)_______,k ); ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; } postorder(TNODE*ptr) { if(ptr=NULL) return; postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); } 13、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。 int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。 const n=用户定义的顶点数; AdjList g ; //用邻接表作存储结构的有向图g。 void dfs(v) {visited [v]=1; num++; //访问的顶点数+1 if (num==n) {printf(“%d是有向图的根。\ ”,v); num=0;}//if p=g[v].firstarc; while (p) {if (visied[p->adjvex]==0) dfs (p->adjvex); p=p->next;} //while visited[v]=0; num--; //恢复顶点v }//dfs void JudgeRoot() //判断有向图是否有根,有根则输出之。 {static int i ; for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。 {num=0; visited[1..n]=0; dfs(i); } }// JudgeRoot 算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。 14、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数 int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数 while(front<=rear) {p=Q[++ front]; if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点 if(p->lchild) Q[++rear]=p->lchild; //左子女入队 if(p->rchild) Q[++rear]=p->rchild; //右子女入队 if(front==last) {level++; //二叉树同层最右结点已处理,层数增1 last=rear; } //last移到指向下层最右一元素 if(level>k) return (leaf); //层数大于k 后退出运行 }//while }//结束LeafKLevel 15、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g) //用“破圈法”求解带权连通无向图的一棵最小代价生成树。 {typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[]; scanf( "%d%d vel[],int n) //由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\ ”); exit(0);} qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大 init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点 BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点 p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据 for (i=0; i if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树 {p->lchild=null; s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 17、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。 #define true 1 #define false 0 typedef struct node {datatype data; struct node *llink,*rlink;} *BTree; void JudgeBST(BTree t,int flag) // 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。 { if(t!=null && flag) { Judgebst(t->llink,flag);// 中序遍历左子树 if(pre==null)pre=t;// 中序遍历的第一个结点不必判断 else if(pre->data else{flag=flase;} //不是完全二叉树 Judgebst (t->rlink,flag); // 中序遍历右子树 }//JudgeBST算法结束 18、本题要求建立有序的循环链表。从头到尾扫描数组A,取出A[i](0<=i //由含n个数据的数组A生成循环链表,要求链表有序并且无值重复结点 {LinkedList h; h=(LinkedList)malloc(sizeof(LNode));//申请结点 h->next=h; //形成空循环链表 for(i=0;i p=h->next; while(p!=h && p->data{pre=p; p=p->next;} //查找A[i]的插入位置 if(p==h || p->data!=A[i]) //重复数据不再输入 {s=(LinkedList)malloc(sizeof(LNode)); s->data=A[i]; pre->next=s; s->next=p;//将结点s链入链表中 } }//for return(h); }算法结束 19、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。 #include typedef int datatype; typedef struct node {datatype data; struct node *next; }listnode; typedef listnode *linklist; void jose(linklist head,int s,int m) {linklist k1,pre,p; int count=1; pre=NULL; k1=head; /*k1为报数的起点*/ while (count!=s) /*找初始报数起点*/ {pre=k1; k1=k1->next; count++; } while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/ { p=k1; /*从k1开始报数*/ count=1; while (count!=m) /*连续数m个结点*/ { pre=p; p=p->next; count++; } pre->next=p->next; /*输出该结点,并删除该结点*/ printf("%4d ,int l1,h1,l2,h2) //将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。 {if(h1>=l1) {post[h2]=pre[l1]; //根结点 half=(h1-l1)/2; //左或右子树的结点数 PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列 PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列 } }//PreToPost 32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。 LinkedList head,pre=null; //全局变量 LinkedList InOrder(BiTree bt) //中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head {if(bt){InOrder(bt->lchild); //中序遍历左子树 if(bt->lchild==null && bt->rchild==null) //叶子结点 if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点 else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表 InOrder(bt->rchild); //中序遍历左子树 pre->rchild=null; //设置链表尾 } return(head); } //InOrder 时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n) 21、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0. typedef struct node {int data; struct node *lchild,*rchild;}node; int N2,NL,NR,N0; void count(node *t) {if (t->lchild!=NULL) if (1)___ N2++; else NL++; else if (2)___ NR++; else (3)__ ; if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____; } 26.树的先序非递归算法。 void example(b) btree *b; { btree *stack[20], *p; int top; if (b!=null) { top=1; stack[top]=b; while (top>0) { p=stack[top]; top--; printf(“%d”,p->data); if (p->rchild!=null) {(1)___; (2)___; } if (p->lchild!=null) (3)___; (4)__; }}}} 22、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。 23、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。 #define MAX 100 typedef struct Node {char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main (int argc,int **argv) { TNODE *root; if(argc<3) exit 0; strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred)); postorder(root); } TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______; for((2)_______ ; rpos ptr->llink=restore(ppos+1, (4)_______,k ); ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; } postorder(TNODE*ptr) { if(ptr=NULL) return; postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); } 24、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。 int Similar(BiTree p,q) //判断二叉树p和q是否相似 {if(p==null && q==null) return (1); else if(!p && q || p && !q) return (0); else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild)) }//结束Similar 25、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。 26、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={ 写出G的拓扑排序的结果。 G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7 27、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数 int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数 while(front<=rear) {p=Q[++front]; if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点 if(p->lchild) Q[++rear]=p->lchild; //左子女入队 if(p->rchild) Q[++rear]=p->rchild; //右子女入队 if(front==last) {level++; //二叉树同层最右结点已处理,层数增1 last=rear; } //last移到指向下层最右一元素 if(level>k) return (leaf); //层数大于k 后退出运行 }//while }//结束LeafKLevel 28、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。 typedef struct { BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问 }stack; stack s[],s1[];//栈,容量够大 BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。 {top=0; bt=ROOT; while(bt!=null ||top>0) {while(bt!=null && bt!=p && bt!=q) //结点入栈 {s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下 if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点 {for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存 if(bt==q) //找到q 结点。 for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配 {pp=s[i].t; for (j=top1;j>0;j--) if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);} } while(top!=0 && s[top].tag==1) top--; //退栈 if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历 }//结束while(bt!=null ||top>0) return(null);//q、p无公共祖先 }//结束Ancestor 29、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。下载本文