视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
机器视觉-实验三报告-模板匹配法实现车牌识别
2025-10-02 15:03:45 责编:小OO
文档
实验三报告 模板匹配法实现车牌识别

一、实验目的

结合印刷体字符识别方法,用模板匹配法实现车牌识别。

要求:能实现车牌定位、字符分割和车牌中数字0-9的识别。

二、实验设备

微机

三、实验内容及步骤

1.上机编写程序。

2.调试程序。

3.根据实验结果,撰写实验报告。

四、实验报告

(一)对汽车图像进行图像转换、图像增强和边缘检测等:

1.载入车牌图像:

figure(1),imshow(I);title('original image');%将车牌的原图显示出来,结果如下:

2.将彩图转换为灰度图并绘制直方图:

I1=rgb2gray(I);%将彩图转换为灰度图

figure(2),subplot(1,2,1),imshow(I1);title('gray image');

figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图

结果如下所示:

3. 用roberts算子进行边缘检测:

I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测

figure(3),imshow(I2);title('roberts operator edge detection image');

结果如下:

4.图像实施腐蚀操作:

se=[1;1;1];

I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作

figure(4),imshow(I3);title('corrosion image');

5.平滑图像

se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个se

I4=imclose(I3,se);% 图像聚类、填充图像

figure(5),imshow(I4);title('smothing image');

结果如下所示:

6. 删除二值图像的小对象

 I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分

figure(6),imshow(I5);title('remove the small objects'); %用imshow函数显示滤波后图像

结果如下所示 :

(二)车牌定位

[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中

myI=double(I5);%将I5转换成双精度

tic      %tic表示计时的开始,toc表示计时的结束

 Blue_y=zeros(y,1);%产生一个y*1的零阵

 for i=1:y

    for j=1:x

             if(myI(i,j,1)==1) 

  %如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色

  %则Blue_y(i,1)的值加1

                Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计 

            end  

     end       

 end

 [temp MaxY]=max(Blue_y);%Y方向车牌区域确定

  %temp为向量yellow_y的元素中的最大值,MaxY为该值的索引

 PY1=MaxY;

while ((Blue_y(PY1,1)>=5)&&(PY1>1))

        PY1=PY1-1;

 end    

 PY2=MaxY;

while ((Blue_y(PY2,1)>=5)&&(PY2        PY2=PY2+1;

 end

 IY=I(PY1:PY2,:,:);

 %行方向车牌区域确定

 %%%%%% X方向 %%%%%%%%%

 Blue_x=zeros(1,x);%进一步确定x方向的车牌区域

 for j=1:x

     for i=PY1:PY2

            if(myI(i,j,1)==1)

                Blue_x(1,j)= Blue_x(1,j)+1;               

            end  

     end       

 end

  

 PX1=1;

while ((Blue_x(1,PX1)<3)&&(PX1       PX1=PX1+1;

 end    

 PX2=x;

while ((Blue_x(1,PX2)<3)&&(PX2>PX1))

        PX2=PX2-1;

 end

 PX1=PX1-1;%对车牌区域的校正

 PX2=PX2+1;

  dw=I(PY1:PY2-8,PX1:PX2,:);

 t=toc; 

figure(7),subplot(1,2,1),imshow(IY),title('Line direction areas');%行方向车牌区域确定

figure(7),subplot(1,2,2),imshow(dw),title('positioning color  images');%定位后的车牌区域如下所示:

(三)字符分割与识别

1.车牌的进一步处理

对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。代码如下:

%将彩色车牌写入dw文件中

b=rgb2gray(a);%将车牌图像转换为灰度图

figure(8);subplot(3,2,1),imshow(b),title('车牌灰度图像')

g_max=double(max(max(b)));

g_min=double(min(min(b)));

T=round(g_max-(g_max-g_min)/3); % T 为二值化的阈值

[m,n]=size(b);

d=(double(b)>=T); % d:二值图像

subplot(3,2,2),imshow(d),title('before filtering binary licence plate')

%均值滤波前

% 滤波

h=fspecial('average',3);

%建立预定义的滤波算子,average为均值滤波,模板的尺寸为3*3

d=im2bw(round(filter2(h,d)));%使用指定的滤波器h对h进行d即均值滤波

subplot(3,2,3),imshow(d),title('after average licence plate')

% 某些图像进行操作

% 膨胀或腐蚀

% se=strel('square',3);  % 使用一个3X3的正方形结果元素对象对创建的图像进行膨胀

% 'line'/'diamond'/'ball'...

se=eye(2); % eye(n) returns the n-by-n identity matrix 单位矩阵

[m,n]=size(d);%返回矩阵b的尺寸信息, 并存储在m,n中

if bwarea(d)/m/n>=0.365 %计算二值图像中对象的总面积与整个面积的比是否大于0.365

    d=imerode(d,se);%如果大于0.365则图像进行腐蚀

elseif bwarea(d)/m/n<=0.235 %计算二值图像中对象的总面积与整个面积的比是否小于0.235

    d=imdilate(d,se);%如果小于则实现膨胀操作

end

subplot(3,2,4),imshow(d),title('expansion or corrosion the licence plate');

运行结果如下所示:

2.字符分割

在汽车牌照自动识别过程中,字符分割有承前启后的作用。它在前期牌照定位的基础上进行字符的分割,然后再利用分割的结果进行字符识别。字符识别的算法很多,因为车牌字符间间隔较大,不会出现字符粘连情况,所以此处采用的方法为寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割。一般分割出来的字符要进行进一步的处理,以满足下一步字符识别的需要。但是对于车牌的识别,并不需要太多的处理就已经可以达到正确识别的目的。在此只进行了归一化处理,然后进行后期处理。

% 寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割

%首先创建子函数qiege与getword,而后调用子程序,将车牌的字符分割开并且进行归一化处理

d=qiege(d);

[m,n]=size(d);

subplot(3,2,5),imshow(d),title(n)

k1=1;k2=1;s=sum(d);j=1;

while j~=n

    while s(j)==0

        j=j+1;

    end

    k1=j;

while s(j)~=0 && j<=n-1

        j=j+1;

    end

    k2=j-1;

if k2-k1>=round(n/6.5)

        [val,num]=min(sum(d(:,[k1+5:k2-5])));

        d(:,k1+num+5)=0;  % 分割

    end

end

% 再切割

d=qiege(d);

% 切割出 7 个字符

y1=10;y2=0.25;flag=0;word1=[];

while flag==0

    [m,n]=size(d);

    left=1;wide=0;

    while sum(d(:,wide+1))~=0

        wide=wide+1;

    end

if wide        d(:,[1:wide])=0;

        d=qiege(d);

    else

        temp=qiege(imcrop(d,[1 1 wide m]));

        [m,n]=size(temp);

        all=sum(sum(temp));

        two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));

if two_thirds/all>y2

            flag=1;word1=temp;   % WORD 1

        end

        d(:,[1:wide])=0;d=qiege(d);

    end

end

% 分割出第二个字符

[word2,d]=getword(d);

% 分割出第三个字符

[word3,d]=getword(d);

% 分割出第四个字符

[word4,d]=getword(d);

% 分割出第五个字符

[word5,d]=getword(d);

% 分割出第六个字符

[word6,d]=getword(d);

% 分割出第七个字符

[word7,d]=getword(d);

figure(9);

subplot(2,7,1),imshow(word1),title('1');

subplot(2,7,2),imshow(word2),title('2');

subplot(2,7,3),imshow(word3),title('3');

subplot(2,7,4),imshow(word4),title('4');

subplot(2,7,5),imshow(word5),title('5');

subplot(2,7,6),imshow(word6),title('6');

subplot(2,7,7),imshow(word7),title('7');

[m,n]=size(word1);

% 商用系统程序中归一化大小为 40*20,此处演示

word1=imresize(word1,[40 20]);

word2=imresize(word2,[40 20]);

word3=imresize(word3,[40 20]);

word4=imresize(word4,[40 20]);

word5=imresize(word5,[40 20]);

word6=imresize(word6,[40 20]);

word7=imresize(word7,[40 20]);

subplot(2,7,8),imshow(word1),title('1');

subplot(2,7,9),imshow(word2),title('2');

subplot(2,7,10),imshow(word3),title('3');

subplot(2,7,11),imshow(word4),title('4');

subplot(2,7,12),imshow(word5),title('5');

subplot(2,7,13),imshow(word6),title('6');

subplot(2,7,14),imshow(word7),title('7');

运行结果如下:

(三)车牌识别:

模板匹配是图象识别方法中最具代表性的基本方法之一,它是将从待识别的图象或图象区域f(i,j)中提取的若干特征量与模板T(i,j)相应的特征量逐个进行比较,计算它们之间规格化的互相关量,其中互相关量最大的一个就表示期间相似程度最高,可将图象归于相应的类。也可以计算图象与模板特征量之间的距离,用最小距离法判定所属类。

此处采用相减的方法来求得字符与模板中哪一个字符最相似,然后找到相似度最大的输出。汽车牌照的字符一般有七个,大部分车牌第一位是汉字,通常代表车辆所属省份,紧接其后的为字母与数字。车牌字符识别与一般文字识别在于它的字符数有限,汉字共约50多个,大写英文字母26个,数字10个。为了实验方便,结合本次设计所选汽车牌照的特点,只建立了7个数字26个字母与10个数字的模板。其他模板设计的方法与此相同。

首先取字符模板,接着依次取待识别字符与模板进行匹配,将其与模板字符相减,得到的0越多那么就越匹配。把每一幅相减后的图的0值个数保存,即为识别出来的结果。

识别的流程图如下所示:

源代码如下:

liccode=char(['0':'9' 'A':'Z' '苏豫陕鲁京辽浙']);  %建立自动识别字符代码表  

SubBw2=zeros(40,20);

l=1;

for I=1:7

      ii=int2str(I);

      SegBw2=imresize(t,[40 20],'nearest');

SegBw2=double(SegBw2)>20;

        if l==1                 %第一位汉字识别

            kmin=37;

            kmax=43;

        elseif l==2             %第二位 A~Z 字母识别

            kmin=11;

            kmax=36;

else l>=3 %第三位以后是字母或数字识别

            kmin=1;

            kmax=36;

        

        end

        

        for k2=kmin:kmax

            SamBw2 = imread(fname);

SamBw2=double(SamBw2)>1;

            for  i=1:40

                for j=1:20

                    SubBw2(i,j)=SegBw2(i,j)-SamBw2(i,j);

                end

            end

           % 以上相当于两幅图相减得到第三幅图

            Dmax=0;

            for k1=1:40

                for l1=1:20

if ( SubBw2(k1,l1) > 0 | SubBw2(k1,l1) <0 )

                        Dmax=Dmax+1;

                    end

                end

            end

            Error(k2)=Dmax;

        end

        Error1=Error(kmin:kmax);

        MinError=min(Error1);

        findc=find(Error1==MinError);

        Code(l*2-1)=liccode(findc(1)+kmin-1);

        Code(l*2)=' ';

        l=l+1;

end

figure(10),imshow(dw),title (['车牌号码:', Code],'Color','b');

通过以上的方法,我对另外一幅图像进行了检测,也有较好的识别效果。下面是对另一幅车牌照的检测,结果如下所示:

下载本文

显示全文
专题