视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
函数信号发生器设计论文.
2025-10-02 14:57:33 责编:小OO
文档
四川师范大学成都学院通信原理课程设计

前言 ..................................................................... 1

1 函数信号发生器设计任务 ................................................ 1

1.1 设计提议 ........................................................... 1

1.2 方案论证与研究 ..................................................... 1

2 方案设计 .............................................................. 2

2.1 项目指标 ........................................................... 2

2.1.1 电源参数 ....................................................... 2

2.1.2 工作频率 ....................................................... 2

2.2 方案比较及选择 ..................................................... 2

3 设计理论 .............................................................. 3

3.1 函数发生器的结构组成 ............................................... 3

3.2 方波信号 ........................................................... 3 如图3.2-1由运算放大器和电容积分电路、Rf组成的,输出电压最终反馈到运

放反相输出端,因此积分电路有负反馈和延迟的作用。 ........................ 3

3.3 正弦波信号 ......................................................... 4

3.4 三角波信号 ......................................................... 6

4 RC振荡电路设计 ........................................................ 7

5 放大器功率及ICL8038介绍 ............................................... 9

5.1 放大器功率 ......................................................... 9

5.2 ICL8038原理介绍 ................................................... 10

6 致谢 .................................................................. 11

7 总结及体会 ............................................................ 12

附录1 系统原理图 ....................................................... 13

附录2 系统元件清单 ..................................................... 14

附录3 系统PCB图 ....................................................... 15

I

四川师范大学成都学院通信原理课程设计 参考文献 ................................................................ 16

II

四川师范大学成都学院通信原理课程设计 函数信号发生器设计论文

前言

函数信号发生器的制作是以集成块ICL8038为核心器件,制作的成本也相对较低。是适合学生学习、使用电子技术测量。ICL8038可以输出具有多种波形的精密振荡集成电路,要想产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号只需要个别外部元件。输出波形的占空比和频率还可以由电阻或电流控制。其次由于此芯片具有调制信号的输入端,所以可以用作频率调制,针对于低频信号。

函数信号发生器有着不同的用途,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。

1 函数信号发生器设计任务

1.1 设计提议

产品开发、工业生产、科学研究等领域都的使用函数信号发生器,它常用的基本测试信号有锯齿波和正弦波、矩形波、三角波。常作为时基电路的锯齿波信号在示波器等仪器中利用荧光屏显示图像。例如,想要通过示波器荧光屏上观察到被测不失真地信号波形,通过产生锯齿波电压使的电子束在水平方向匀速搜出荧光屏。方波,三角波都有着不同的重要作用,而函数信号发生器是指一种能自发的产生方波、正弦波、三角波和锯齿波阶梯波等电压波形的仪器或电路。因此,提议设计一种能产生三角波、正弦波、方波的函数信号发生器。

1.2 方案论证与研究

函数信号发生器用途较多,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化

1

四川师范大学成都学院通信原理课程设计 为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。

2 方案设计

2.1 项目指标

2.1.1 电源参数

● 输入:双电源 +12V、-12v

● 输出:方波电压约等于12v,三角波电压与约等于5v,正弦波电压大于1v,幅

度可连续调,线性失真就会较小。

2.1.2 工作频率

频率范围:10HZ~100HZ,100HZ~1000HZ

2.2 方案比较及选择

方案一:正弦振荡是由文氏电桥产生,然后得到方波,三角波是方波积分得到的。 此方案结构简单,是一开环电路,产生的失真较小的正弦波和方波波形①。但于产生三角波则比较有麻烦,因为频率覆盖系数要求有1000倍,因此对于1000倍的频率变化会有积分时间从而使输出电压振幅的1000倍变化。而这是不满足电路要求的。幅度的稳定性几乎难以达到要求。并且通过仿真实验会发现积分器极易产生线性失真。

方案二:通过芯片ICL8038产生8083集成函数发生器。

该集成函数发生器是一种用途较多的波形发生器,可以产生方波、正弦波、三角波和锯齿波,通过外加的直流电压进行振荡器调节,所以是电压控制集成信号产生器。由于两个电流源控制外接电容C的充、放电电流,所以电容C两端电压大小变化与时间成线形关系,从而可以输出理想的三角波波形。8038电路中含正弦波变换器,因此可以将三角波转化成正弦波输出。另外还可以将三角波转换成方波输出通过触发器。此方案的特点有:

◆ 稳定性好而且线性良好;

◆ 易调频率,频带在几个数量级范围内,可以方便地、连续地改变频率大小,

而且

2

四川师范大学成都学院通信原理课程设计 ◆ 变频率的同时,幅度是不会发生变的;

◆ 不会出现过渡过程,只要接通电源后就会立即产生稳定的波形图;

◆ 方波和三角波在半周期内的时间是线性函数,容易转换为别的波形。

故由此,本次信号设计采用的是第二种方案。

3 设计理论

3.1 函数发生器的结构组成

函数发生器是指能够自动产生方波、正弦波、三角波的电压波形的仪器或电路。可以采用由运放、分离元件及单片集成函数发生器构成电路形式。根据不同的用途,可以产生三种或多种不同波形的函数发生器,本次介绍的事不同函数信号发生器的方法。

函数信号发生器是由正弦波形发生电路和基础的非正弦信号发生电路组合成的。下面我们将分别对方波、正弦波、三角波的发生进行分析,从而使在合成电路时电路更加的合理。

3.2 方波信号

如图3.2-1由运算放大器和电容积分电路、Rf组成的,输出电压最终反馈到运放反相输出端,因此积分电路有负反馈和延迟的作用。

图3.2-1 运算放大电路

电路如图3.2-2所示,在接通电源时,电容两端的电压为零,且输出电压等于UZ,所以运放同相输出端的电压uP=UzR2=UZF。 R1+R2

3

四川师范大学成都学院通信原理课程设计 此时uO=UZ向C充电,使运放反相端输入电压uN不断上升。在uN小于uP以前,uO=UZ不变。在t=t1时,uN逐渐上升到略高于uP,使uO从高电平跳到低电平,变为-UZ。

此时通过Rf向C充电,使运放反相输入端的电压uNuP=-UZF,uO=-UZ时,

逐渐增加。在uN大于uP以前,uO=-UZ大小保持不变。在t等于t2时,uN减小到稍低于uP,则uO从低电平跳到高电平,变为UZ,又回到最初状态。如此重复,循环,从而产生振荡,并输出方波。

根据上面的分析,从而可以画出如下图uO与uC的波形:

图3-2-2 uO与uC的波形

有图波形,并取适当的R1、R2值, F=R2(R1+R2),则T=2RfC,得到振荡频率为:

3.3 正弦波信号

即又被称为文氏电桥振荡器,如图3-3-1所示其中是由同相运放电路组成的A放大器,如图3.3-1, Av=

VoR=(2+1) VdR1f0=11=T2CRf

4

四川师范大学成都学院通信原理课程设计

图3.3-1 文氏电桥振荡电路

图3.3-2 同相运放电路

由RC串并联组成网络F,因为运放的输入阻抗较大,所以输出阻抗Ro就很小,对网络F几乎没有影响影响,故忽略不计,根据图3.3-3得 R

VfjωRC+1Fv==1RVo++RjωC1+jωRC

=R

1(jωRC+1+R)+RjωC=R1j(ωR2C-)+3RωC

5

四川师范大学成都学院通信原理课程设计 根据自激振荡条件: AF =T=1故有AvFv=AvR=1 因此上式中分母12j(ωRC-)+3RωC

中的虚部必须等于零,即 R2Cw-1=0 ωC

⇒振荡频率ω0=1 CR

上式中实部为1,所以起振条件Av=3

图3.3-2是同相运放,Av=R2+1 须满足条件2R1=

R2 R1

图3.3-3 RC串并联

3.4 三角波信号

根据RC的积分电路输出和输入信号波形的关系可得,当输入信号是方波时,则输出的信号便是三角波,由此可知,三角波信号发生器是由RC积分电路和方波信号发生器组成。下图3-2-3便是三角波信号发生器的电路组成。图中的方波信号发生器是由A1运算放大器组成, RC积分电路是由A2组成。该电路的设计原理是:由方波信号发生器输出方波。反相积分电路由图中A1,A2和C、R4等组成。

分析可以画出uO1和uO的波形,如图3.4-1所示。

6

四川师范大学成都学院通信原理课程设计

图3.4-1 uO1和uO的波形

电压uO的上升和下降幅度和时间变量相等,而且上升和下降的斜率的绝对值大小也相等。三角故波uO峰值为:

Uom=

UZR2 R1

4R1R4C R2

则在调整三角波电路时,R1或R2应被先调整,使峰值达到所需要的值,最后再调整故振荡周期: T=2(t2-t1)=R4或C,使频率f0能满足要求。

4 RC振荡电路设计

RC振荡器电路的设计,就是根据给出的指标要求,选择适合的电路结构形式,并确定和计算电路中各元件的参数,在所要求的频率范围内使它们满足振荡的条件,使电路产生正弦波形。

RC振荡器的设计的步骤为:

● 根据已知的指标参数,选择适合的电路形式。 ● 计算并确定电路中的各元件参数。 ● 选择运算放大器

● 为满足电路指标要求可通过调试。

7

四川师范大学成都学院通信原理课程设计

例如:设计一个振荡频为800Hz的RC正弦波振荡器。 设计步骤如下:

计算并确定电路中的各元件参数。

● RC的值可根据振荡器的频率计算。

RC=

● 确定R和C的值 1=1.99⨯10-4(s) 2πf0

为了使选频网络不受运算放大器输入和输出电阻的影响。按:Ri >> R >> R0的关系确定R的值。其中:运算放大器同相端的输入电阻Ri。为运算放大器的输出电阻R0。

当R=20kΩ时,则:

1.99⨯10-4

-7C==0.995⨯10F 320⨯10

● 确定R3和Rf 的值(Rf=R4+Rw+rd//R5)

根据振荡的振幅条件,Rf应大于2R3,取Rf=2.01R3。从而减小波形失真。

此外,为了满足R等于R3并联Rf的直流平衡条件,并减小运放输入失调的影响。

由Rf=2.01R3和R=R3//Rf可求出:

R3=

取整数值: R3=30k Ω

所以:Rf=2.01R3=2.01⨯30⨯103Ω=60.3kΩ.

为了是效果更好, Rf与R3的值还可以通过实验调整后确定。

● 确定其元件值及电路。

电路由R5和接法相反的二极管D1、D2并联而成。

二极管D1、D2 应选用其元件值硅管,因其温度稳定性较高。当然二极管D1、D2的特性必须保持一致,以确保输出波形的正负半轴对称。

● R2与R5确定

由于二极管的非线性会导致波形失真,因此,可在二极管的两端并上一个阻值与rd相近的电阻R5。用来减小非线性失真,然后再经过调整,达到最好效果。便可确定R5,再计算出R2。 为了是效果更加明显,电阻 R2可用50kΩ电阻和40 kΩ的电位器串联。

● 运放型号的选择

运放选择,要求输入高阻、输出低阻,而且满足增益带宽积:Auo• BW 大于3fo 的

8 3.13.1⨯20⨯103=29.8⨯103Ω R =2.012.01

四川师范大学成都学院通信原理课程设计

条件。因为fo=800Hz,所以选择μA741集成运算放大器。

5 放大器功率及ICL8038介绍

5.1 放大器功率

由多级放大器组成的便是电子电路。在工作过程中,电压放大是由小信号放大电路对输入信号进行的,再通过功率放大电路将功率放大,以便于控制或驱动负载电路工作。功率放大器就是以功率放大为目的的电路。低频功率放大器也称为功率放大器,是能使低频信号功率放大的放大器。

如图5.1-1 OTL 低频功率放大器所示。其中由晶体三极管T1组成前置放大级(也称推动级),T2、T3是一组参数对称的PNP和NPN型晶体三极管,它们组成OTL功放电路。射极输出器形式是由每一个管子接成的,因此输出电阻低,负载能力较强等优点,适合功率输出级。甲类状态由T1管工作,此集电极电流IC1是通过电位器RW1进行调节。IC1 的一部分流经二极管D及电位器RW2, 给T2、T3提供电压。通过调节RW2,可以使T2、T3在甲、乙类状态得到合适的静态电流,以克服失的一端,因此可在电路中引入交、直流电压并联负反馈,一方面改善了非线性失真,同时也能够稳定放大器的静态工作点。 R和C2构成用于提高输出电压正半周的幅度自举电路,从而得到较大的动态范围。 C2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 主要性能指标是OTL 电路。

在输出功率P0m的最大不失真理想情况下,在实验中可测量RL 两端的电压有效值通过计算来得实际的

其中由晶体三极管T1组成前置放大级(也称推动级),T2、T3是一对参数对称的NPN和PNP型晶体三极管,互补推挽的OTL功放电路就由它们组成。由于射极输出器形式是每一个管子连接成的,因此具有输出低电 阻,负载能力较强等优点,适合作用于功率输出级。甲类状态T1管工作,通过调节电位器RW1来调节它的集电极电流IC1。IC1 的一部分流经二极管D及电位器RW2, 给T2、T3提供偏电压。为甲、乙类状态在T2、T3得到合适的静态电流,可通过调节RW2来实现,从而又由于RW1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。

9

四川师范大学成都学院通信原理课程设计

图5.1-1 OTL 功率放大器实验电路

5.2 ICL8038原理介绍

芯片ICL8038是单片集成函数发生器,如图5-3s所示为其内部原理电路框图。ICL8038由恒流电流源I1、I2,触发器和电压比较器C1、C2等组成。电压比较器C1的门限电压为2VR/3、的为VR(VR= VEE+VCC),可通过调节外接电阻确定电流源I1和I2的大小,并且I2必须大于I1。当触发器Q端输出电平低时,I2通过开关S的控制从而使电流源断开。而电流源I1向外接电容C充电,电压随时间变化线性下降,当其下降到小于VC时,比较器C2输出发生跳变,当VC上升到2VR/3时,比较器C1输出波形会发生跳变,从而使触发器输出端Q由低电平变为高电平,电流源I2接通通过控制开关S。当其上升和下降时间相等时,产生的波形输出到引脚3,而触发器输出的波形经缓冲器输出到引脚9。三角波由正弦波变换器变成正弦波后由引脚2输出。由此知ICL8038能输出三角波、方波和正弦波等三种及三种以上的不同波形。其中,外部接入振荡电容C,它是通过内部两个恒流电源来完成充电、放电的过程。恒流源2的工作状态是由恒流源1对电容器C持续充电,并增加电容电压,从而达到改变比较器的状态改变、输入电平以及带动触发器翻转来连续控制的。当触发器使恒流源2处于关闭状态,电容电压值是比较器1输入电压规定值的2/3倍时,比较器1的状态发生改变,使触发器的工作状态发生翻转,此时将模拟开关K由B接到A点。因为恒流源2的电流值为2I,比恒流源1大,所以电容器处于放电状态,在单位时间内电容器端电压将将发生改变,为线性下降,当电容电压值下降到比较器2的输入电压规定值的1/3倍时,比较器2状态发生改变,使触发器再次翻转到原来的状态,周而复始的完成此振荡过程。

10

四川师范大学成都学院通信原理课程设计 根据以上分析,上述基本电路中很容易获得3种函数信号,倘若电容器在放电过程和在充电过程的时间常数相等,而且是在电容器充放电时,那么电容电压输出的就是三角波函数,从而三角波信号由此获得。因为触发器的工作状态也是由电容电压的充放电的过程决定的,因此,触发器的状态通过翻转,就能够产生方波函数信号,在芯片内部结构中,这两种信号经过缓冲器功率的放大,并从管脚3和管脚9输出可得。 满足方波函数等信号在频率、占空比调节的全部范围可适当的选择外部电阻RA和RB和C。所以,对两个电流源在I和2I电流不等的情况下,可以从最小到最大范围中循

环调节,并任意选择调整,因此,只需要使电容器充放电时间不相等,便可获得锯齿波等函数信号。

图5.2-1 内部原理电路框图

6 致谢

本课题在选题以及研究过程是在孙活老师的亲切关怀和悉心指导下完成的。老师们多次询问研究设计进程,并为我悉心指点迷津,帮助我开拓思路,耐心点拨、鼓励。老师们严谨细致、一丝不苟的工作作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且教我做人,虽历时三载,却给以终生受益无穷之道。对老师的感激之情是无法用言语表达的。 感谢带过我的老师对我的教育培养。他们细心指导我的学习与研究, 从课题的选择到项目的最终完成,老师们都始终给予我细心的指导和不懈的支持。在此,我要向诸位老师深深地鞠上一躬并致以诚挚的谢意和崇高的敬意。

在此,我还要感谢我的5位室友,正是有你们的帮助、理解和支持,我才能克服一个一个的困难,直至顺利的完成本文。当然也缺少不了一起愉快度过三年的大学同学,他们给与我帮助,支持,我在此也由衷的表示感谢。最后我还要感谢含辛茹苦的把培养

11

四川师范大学成都学院通信原理课程设计 我长大的父母,谢谢您们!

7 总结及体会

通过本次课程设计,加强了我们的思考、动手和解决问题的能力,经常会遇到不同的情况,心里总想着这样的接法或许可以行得通,但实际接上电路后才发现不对,实现不了预想的效果,因此耗在这上面的时间用的比较多。

我觉得做课程设计的同时也巩固和加强了课本知识,由于课本上的知识太多而且零散,平时课间的学习也并不能很好的理解并运用各个元件的功能,考试内容又比较有限,因此在这次课程设计过程中,我了解了很多元件的功能以及使用。平时看课本学习书本知识时,有时问题总是弄不懂,可做完设计,那些不是问题的问题就迎刃而解了。甚至还记住很多东西,受益匪浅。如一些芯片的功能及作用,平时看课本讲解,看一次忘一次,没从根本上理解。通过这次动手实践让我对各个元件印象深刻。所以认识、了解来源于实践,实践才是认识的动力和最终目的,实践出真理。所以这次的设计对我的学习和帮助作用都非常大的。

通过该次设计,在理论学习时,很少会有实践的机会,但我们学院可以,而且设计制作也是一个团队的任务!一起的学习工作中可以让我们团结一致,相互帮助,默契配合,多少欢乐在这里洒下。我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结合作的精神。这次实验设计必将成为我人生旅途上的一个非常美好的回忆!

通过对此课程设计是我认识到,电路设计需要我们耐心,需要缜密的整套思维逻辑,要求我们学会分析。懂得只有理论知识是远远不够的,只有将理论和实践结合起来才能顺利完成。我期盼在今后的学习过程中能让学生更加的接近器材,完成很多知识不能只看表面,要深究其真正作用才行,需要不断积累经验。所以说,坐而言不如立而行,对于这些电路还是得自己亲自动手才能印象深刻。

这次的课程设计终于顺利完成了,在设计中也遇到了很多专业知识问题,最后通过老师的辛勤指导,终于迎刃而解了。经过老师的悉心指导,我们学也到了很多实用的知识,在次我表示深深感谢!同时,对给过我帮助和支持的所有同学及各位指导老师再次表示忠心的感谢!

12

四川师范大学成都学院通信原理课程设计 附录1 系统原理图

图1 系统原理图

13

四川师范大学成都学院通信原理课程设计

附录2 系统元件清单

14

四川师范大学成都学院通信原理课程设计 附录3 系统PCB图

图2 信号发生器图

15

四川师范大学成都学院通信原理课程设计 参考文献

[1] 康华光、邹寿彬:电子技术基础数字部分(第四版),高等教育出版社,1999.3,P3-P7

[2] 刘光明:现代通信原理,人民邮电出版社,2007.6, P21-P30

[3] 任元、吴勇:《常用电子原件简明手册》,工业出版社,2005.2, P7-P10

[4] 童诗白:模拟电子技术,高等教育出版社,2003.8 , P52-P57

[5]杜肤生:数字集成电路应用,人民邮电出版社,2001.6, P31-P42

[6] 王兆义:电路分析,机械工业出版社,2007.7, P15-P27

[7] 周永金:《模拟电子技术及应用》,陕西锅饭学院电子教研室. 2003.5, P135-P141

[8] 陈路、郑毅:PROTEL 99SE 电路板设计与制作,人民邮电出版社,2007年第2期,P21-P28

16下载本文

显示全文
专题