视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
云南省昆明市中考数学真题试卷
2025-10-02 04:46:36 责编:小OO
文档
2016年云南省昆明市中考数学试卷

参与试题解析

一、填空题:每小题3分,共18分

1.(2016·云南昆明)﹣4的相反数为4.

【考点】相反数.

【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.

【解答】解:﹣4的相反数是4.

故答案为:4.

2.(2016·云南昆明)昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×104.

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.

【解答】解:67300=6.73×104,

故答案为:6.73×104.

3.(2016·云南昆明)计算:﹣=.

【考点】分式的加减法.

【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.

【解答】解:﹣

=

=

=.

故答案为:.

4.(2016·云南昆明)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为40°.

【考点】等腰三角形的性质;平行线的性质.

【分析】由等腰三角形的性质证得E=∠F=20°,由三角形的外角定理证得

∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.

【解答】解:∵DE=DF ,∠F=20°,

∴∠E=∠F=20°,

∴∠CDF=∠E+∠F=40°,

∵AB ∥CE ,

∴∠B=∠CDF=40°,

故答案为:40°.

5.(2016·云南昆明)如图,E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,则四边形EFGH 的面积是 24 .

【考点】中点四边形;矩形的性质.

【分析】先根据E ,F ,G ,H 分别是矩形ABCD 各边的中点得出AH=DH=BF=CF ,AE=BE=DG=CG ,故可得出△AEH ≌△DGH ≌△CGF ≌△BEF ,根据S 四边形EFGH =S 正方形﹣4S △AEH 即可得出结论.

【解答】解:∵E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,

∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.

在△AEH 与△DGH 中,

∵,

∴△AEH ≌△DGH (SAS ).

同理可得△AEH ≌△DGH ≌△CGF ≌△BEF ,

∴S 四边形EFGH =S 正方形﹣4S △AEH =6×8﹣4××3×4=48﹣24=24.

故答案为:24.

6.(2016·云南昆明)如图,反比例函数y=(k ≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC=CD ,

四边形BDCE 的面积为2,则k 的值为 ﹣ .

【考点】反比例函数系数k的几何意义;平行线分线段成比例.

【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.

【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b

∵AC⊥x轴,BD⊥x轴

∴BD∥AC

∵OC=CD

∴CE=BD=b,CD=DO= a

∵四边形BDCE的面积为2

∴(BD+CE)×CD=2,即(b+b)×(﹣a)=2

∴ab=﹣

将B(a,b)代入反比例函数y=(k≠0),得

k=ab=﹣

故答案为:﹣

二、选择题(共8小题,每小题4分,满分32分)

7.(2016·云南昆明)下面所给几何体的俯视图是()

A.B.C.D.

【考点】简单几何体的三视图.

【分析】直接利用俯视图的观察角度从上往下观察得出答案.

【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.

故选:B.

“数学竞赛”,他们的得分情况如表:

A.90,90 B.90,85 C.90,87.5 D.85,85

【考点】众数;中位数.

【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.

【解答】解:在这一组数据中90是出现次数最多的,故众数是90;

排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故选:A.

9.(2016·云南昆明)一元二次方程x2﹣4x+4=0的根的情况是()

A.有两个不相等的实数根B.有两个相等的实数根

C.无实数根D.无法确定

【考点】根的判别式.

【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.

【解答】解:在方程x2﹣4x+4=0中,

△=(﹣4)2﹣4×1×4=0,

∴该方程有两个相等的实数根.

故选B.

10.(2016·云南昆明)不等式组的解集为()

A.x≤2 B.x<4 C.2≤x<4 D.x≥2

【考点】解一元一次不等式组.

【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,

解不等式3x+2≤4x,得:x≥2,

∴不等式组的解集为:2≤x<4,

故选:C.

11.(2016·云南昆明)下列运算正确的是()

A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣2【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式.

【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.

【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;

B、a2•a4=a6,故错误;

C、=3,故错误;

D、=﹣2,故正确,

故选D.

12.(2016·云南昆明)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O 于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()

A.EF∥CD B.△COB是等边三角形

C.CG=DG D.的长为π

【考点】弧长的计算;切线的性质.

【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据

垂径定理判断C;利用弧长公式计算出的长判断D.

【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,

∴AB⊥EF,又AB⊥CD,

∴EF∥CD,A正确;

∵AB⊥弦CD,

∴=,

∴∠COB=2∠A=60°,又OC=OD,

∴△COB是等边三角形,B正确;

∵AB⊥弦CD,

∴CG=DG,C正确;

的长为:=π,D错误,

故选:D.

13.(2016·云南昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()

A.﹣=20 B.﹣=20 C.﹣=D.﹣=

【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.

【解答】解:由题意可得,

﹣=,

故选C.

14.(2016·云南昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E 作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:

①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则

3S△EDH=13S△DHC,其中结论正确的有()

A.1个B.2个C.3个D.4个

【考点】正方形的性质;全等三角形的判定与性质.

【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;

②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而

∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;

③同②证明△EHF≌△DHC即可;

④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则

∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则

DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.

【解答】解:①∵四边形ABCD为正方形,EF∥AD,

∴EF=AD=CD,∠ACD=45°,∠GFC=90°,

∴△CFG为等腰直角三角形,

∴GF=FC,

∵EG=EF﹣GF,DF=CD﹣FC,

∴EG=DF,故①正确;

②∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=CH,∠GFH=∠GFC=45°=∠HCD,

在△EHF和△DHC中,

∴△EHF≌△DHC(SAS),

∴∠HEF=∠HDC,

∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;

③∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=CH,∠GFH=∠GFC=45°=∠HCD,

在△EHF和△DHC中,

∴△EHF≌△DHC(SAS),故③正确;

④∵=,

∴AE=2BE,

∵△CFG为等腰直角三角形,H为CG的中点,

∴FH=GH,∠FHG=90°,

∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,

在△EGH和△DFH中,

∴△EGH≌△DFH(SAS),

∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,

∴△EHD为等腰直角三角形,

过H点作HM垂直于CD于M点,如图所示:

设HM=x,则DM=5x,DH=x,CD=6x,

则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,

∴3S△EDH=13S△DHC,故④正确;

故选:D.

三、综合题:共9题,满分70分

15.(2016·云南昆明)计算:20160﹣|﹣|++2sin45°.

【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可.【解答】解:

20160﹣|﹣|++2sin45°

=1﹣+(3﹣1)﹣1+2×

=1﹣+3+

=4.

16.(2016·云南昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB

求证:AE=CE.

【考点】全等三角形的判定与性质.

【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.

【解答】证明:∵FC∥AB,

∴∠A=∠ECF,∠ADE=∠CFE,

在△ADE和△CFE中,

∴△ADE≌△CFE(AAS),

∴AE=CE.

17.(2016·云南昆明)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;

(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;

(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.

【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.

【解答】解:(1)如图1所示:

(2)如图2所示:

(3)找出A的对称点A′(﹣3,﹣4),

连接BA′,与x轴交点即为P;

如图3所示:点P坐标为(2,0).

18.(2016·云南昆明)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;

(1)这次抽样调查的样本容量是50,并补全条形图;

(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为28.8°;

(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;

(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.

【解答】解:

(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,

故答案为:50;

补全条形图如图所示:

(2)D等级学生人数占被调查人数的百分比=×100%=8%;

在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,

故答案为:8%,28.8;

(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.

19.(2016·云南昆明)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.

(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.

【考点】列表法与树状图法;概率公式.

【分析】先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.【解答】解:(1)树状图如下:

(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,

∴两个数字之和能被3整除的概率为,

即P(两个数字之和能被3整除)=.20.(2016·云南昆明)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果

精确到0.1m)(参考数据:≈1.414,≈1.732)

【考点】解直角三角形的应用-仰角俯角问题.

【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD 得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.

【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

则DE=BF=CH=10m,

在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,

∴DF=AF=70m.

在直角△CDE中,∵DE=10m,∠DCE=30°,

∴CE===10(m),

∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).

答:障碍物B,C两点间的距离约为52.7m.

21.(2016·云南昆明)(列方程(组)及不等式解应用题)

春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

(1)求甲、乙两种商品每件的进价分别是多少元?

(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

【考点】一次函数的应用;二元一次方程组的应用.

【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;

(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.

【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,

依题意得:,解得:,

答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.

(2)设该商场购进甲种商品m件,则购进乙种商品件,

由已知得:m≥4,

解得:m≥80.

设卖完A、B两种商品商场的利润为w,

则w=(40﹣30)m+(90﹣70)=﹣10m+2000,

∴当m=80时,w取最大值,最大利润为1200元.

故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.

22.(2016·云南昆明)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.

(1)求证:CF是⊙O的切线;

(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)

【考点】切线的判定;平行四边形的性质;扇形面积的计算.

【分析】(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA

即可.

(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出

DE=EC=BO=BD=OA由此根据S

阴=2•S△AOC﹣S

扇形OAD

即可解决问题.

【解答】(1)证明:如图连接OD.∵四边形OBEC是平行四边形,

∴OC∥BE,

∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,

∴∠OBD=∠ODB,

∴∠DOC=∠AOC,

在△COD 和△COA 中,

∴△COD ≌△COA ,

∴∠CAO=∠CDO=90°,

∴CF ⊥OD ,

∴CF 是⊙O 的切线.

(2)解:∵∠F=30°,∠ODF=90°,

∴∠DOF=∠AOC=∠COD=60°,

∵OD=OB ,

∴△OBD 是等边三角形,

∴∠DBO=60°,

∵∠DBO=∠F+∠FDB ,

∴∠FDB=∠EDC=30°,

∵EC ∥OB ,

∴∠E=180°﹣∠OBD=120°,

∴∠ECD=180°﹣∠E ﹣∠EDC=30°,

∴EC=ED=BO=DB ,

∵EB=4,

∴OB=OD ═OA=2,

在RT △AOC 中,∵∠OAC=90°,OA=2,∠AOC=60°,

∴AC=OA •tan60°=2,

∴S 阴=2•S △AOC ﹣S 扇形OAD =2××2×2﹣=2﹣.

23.(2016·云南昆明)如图1,对称轴为直线x=的抛物线经过B (2,0)、C (0,4)两点,抛物线与x 轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P 为第一象限内抛物线上的一点,设四边形COBP 的面积为S ,求S 的最大值; (3)如图2,若M 是线段BC 上一动点,在x 轴是否存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.

【考点】二次函数综合题.

【分析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;

(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.

【解答】解:(1)由对称性得:A(﹣1,0),

设抛物线的解析式为:y=a(x+1)(x﹣2),

把C(0,4)代入:4=﹣2a,

a=﹣2,

∴y=﹣2(x+1)(x﹣2),

∴抛物线的解析式为:y=﹣2x2+2x+4;

(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,

+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),

∴S=S

梯形

S=﹣2m2+4m+4=﹣2(m﹣1)2+6,

∵﹣2<0,

=6;

∴S有最大值,则S

(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,

理由是:

设直线BC的解析式为:y=kx+b,

把B(2,0)、C(0,4)代入得:,

解得:,

∴直线BC的解析式为:y=﹣2x+4,

设M(a,﹣2a+4),

过A作AE⊥BC,垂足为E,

则AE的解析式为:y=x+,

则直线BC与直线AE的交点E(1.4,1.2),

设Q(﹣x,0)(x>0),∵AE∥QM,

∴△ABE∽△QBM,

∴①,

由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,

由①②得:a1=4(舍),a2=,

当a=时,x=,

∴Q(﹣,0).

下载本文

显示全文
专题