视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
数据挖掘实验六
2025-10-02 04:44:48 责编:小OO
文档
班级:信管091     姓名:李洋威        学号:090201125

指导老师:张冬丽                        实验类型:上机

实验六 关联规则

1.实验目标

使用SSAS进行关联规则挖掘实验

2.实验内容

生成市场篮方案。Adventure Works 的市场部希望改进公司的网站以促进越区销售。在更新网站之前,需要根据客户的在线购物篮中已有的其他产品创建一个可预测客户购买需求的数据挖掘模型。这些预测还有助于市场部将可能被集中购买的项统一放置在网站的一个位置上。通过实验,创建关联规则模型,可预测可能出现在购物篮中的其他项或客户想要放入购物篮的项。

3.实验步骤

(1) 创建市场篮挖掘模型结构 

1.在 Business Intelligence Development Studio 的解决方案资源管理器中,右键单击“挖掘2.结构”,再选择“新建挖掘结构”。

此时,系统将打开数据挖掘向导。

3.在“欢迎使用数据挖掘向导”页上,单击“下一步”。

在“选择定义方法”页上,确保已选中“从现有关系数据库或数据仓库”,再单击“下一步”。

4.在“选择数据挖掘技术”页的“您要使用何种数据挖掘技术?”下,选中“Microsoft 关联规则”,再单击“下一步”。

“选择数据源视图”页随即显示。 默认情况下,“可用数据源视图”下的 Adventure Works DW 为选中状态。 

5.单击“下一步”。

6.在“指定表类型”页上,选中 vAssocSeqOrders 表旁的“事例”复选框,选中 vAssocSeqLineItems 表旁边的“嵌套”复选框,再单击“下一步”(注意先在视图中建立两个表之间的关联)

7.在“指定定型数据”页上,依次清除 CustomerKey 旁边的“键”复选框和 LineNumber 旁边的“键”和“输入”复选框。

8.选中 Model 列旁边的“键”和“可预测”复选框。 然后,系统也将自动选中“输入”复选框。

单击“下一步”

9.在“指定列的内容和数据类型”页上,单击“下一步”

10.在“完成向导”页的“挖掘结构名称”中,键入 Association。

11.在“挖掘模型名称”中,键入 Association,再单击“完成”。

(2) 调整关联模型的参数和处理关联模型

在处理上一个任务中与“关联”挖掘结构一起创建的初始挖掘模型之前,必须更改以下两个参数的默认值:Support 和 Probability。Support 定义规则被视为有效前必须存在的事例百分比。Probability 定义关联被视为有效前必须存在的可能性。

调整关联模型的参数步骤如下:

1.打开数据挖掘设计器的“挖掘模型”选项卡。

2.右键单击设计器网格中的“关联”列,然后选择“设置算法参数”。 

系统将打开“算法参数”对话框。

3.在“算法参数”对话框的“值”列中,设置以下参数:

MINIMUM_PROBABILITY = 0.1

MINIMUM_SUPPORT = 0.01

4.单击“确定”。

处理关联模型步骤如下:

1.在 Business Intelligence Development Studio 的“挖掘模型”菜单上,选择“处理挖掘结构和所有模型”。

系统将打开“处理挖掘结构 - 关联”对话框。 

2.单击“运行”。

系统将打开“处理进度”对话框,以显示有关模型处理的信息。模型处理可能需要一些时间,具体时间取决于您的计算机。

3.处理完成之后,在“处理进度”和“处理挖掘结构 - 关联”对话框中,单击“关闭”。

(3) 浏览市场篮模型 

使用数据挖掘设计器的“挖掘模型查看器”选项卡中的 Microsoft 关联查看器浏览该模型。 浏览模型时,可以轻松地查看可能同时出现的产品,并可浏览项之间的关系。 还可以筛选出较弱的关联,并对新浮现的模式有一个总体的概念。

Microsoft 关联查看器包含三个选项卡:“项集”、“规则”和“依赖关系网络”。 

“项集”选项卡 

“项集”选项卡显示与 Microsoft 关联算法发现的项集相关的三种重要信息:支持度(发生项集的事务的数量)、大小(项集中项的数量)以及项集的实际构成。 根据算法参数的设置方式,算法可以生成大量的项集。 使用“项集”选项卡顶部的控件,可以筛选查看器,使其仅显示包含指定的最小支持度和项集大小的项集。 

也可以使用“筛选项集”框来筛选查看器中显示的项集。 例如,若要仅查看包含有关 Mountain-200 自行车信息的项集,可在“筛选项集”中输入 Mountain-200。 您将在查看器中看到,只有包含“Mountain-200”字样的项集被显示。 查看器中返回的每个项集都包含有关销售 Mountain-200 自行车事务的信息。 例如,在“支持度”列中包含值 710 的项集表示:在所有事务中,710 个购买 Mountain-200 自行车的人也购买了 Sport-100 自行车。

“规则”选项卡 

“规则”选项卡显示与算法发现的规则相关的以下信息。

∙概率 规则发生的可能性。

∙重要性 用于度量规则的有用性,值越高则意味着规则越有用。 只看概率可能会产生误解。 例如,如果每个事务都包含一个 x 项,规则 y 预测 x 发生的概率为 1,即 x 一定会发生。 即使规则的准确性很高,但这并未传达很多信息,因为不管 y 如何,每个事务都会包含 x。

∙规则 规则的定义。

像使用“项集”选项卡一样,可以筛选规则,以便仅显示最关心的规则。 例如,如果只想查看包含 Mountain-200 自行车的规则,可在“筛选规则”框中输入 Mountain-200。 查看器将仅显示包含“Mountain-200”字样的规则。 每条规则都可以根据事务中其他项的发生情况来预测某个项的发生情况。 例如,由第一个规则可知:如果一个人购买了 Mountain-200 自行车和水壶,则此人还会购买 Mountain 水壶套的概率为 1。

“相关性网络”选项卡 

使用“相关性网络”选项卡,可以研究模型中不同项的交互。 查看器中的每个节点表示一个项;例如,Mountain-200 = Existing 节点表示事务中存在 Mountain-200。 通过选择节点,可以使用选项卡底部的彩色图例来确定模型中的项与其他的项的相互确定关系。

滑块与规则的概率关联。 上下移动滑块可以筛选出弱关联。 例如,在“显示”框中,选择“仅显示属性名称”,再单击 Mountain Bottle Cage 节点。 查看器显示,Mountain 水壶套预测了水壶和 Mountain-200 自行车,而水壶和 Mountain-200 自行车也预测了 Mountain 水壶套。 这意味着,这些项有可能同时在事务中出现。 也就是说,如果某个客户购买了自行车,则他也可能会购买水壶套和水壶。

 4.实验结果及问题讨论

(1)根据实验结果给出市场部统一放置在网站的一个位置上的可能被集中购买的项的建议。

 因为Mountain-200 自行车和 Mountain 水壶套关联性强,所以这两种商品可以集中放置。

(2)写出自己对关联规则的理解

应该是顾客购买一种商品可能会联想到或下意识的购买与其商品有关联的其他商品的一种选择过程。

5.实验心得

通过此次上机,学会了使用SSAS建立关联规则,了解通过,创建关联规则模型,可预测可能出现在购物篮中的其他项或客户想要放入购物篮的项。但是具体的分析过程不明白。下载本文

显示全文
专题