视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
分而治之算法---归并排序
2025-10-02 04:42:57 责编:小OO
文档
归并排序

可以运用分而治之方法来解决排序问题,该问题是将n 个元素排成非递减顺序。分而治之方法通常用以下的步骤来进行排序算法:若n 为1,算法终止;否则,将这一元素集合分割成两个或更多个子集合,对每一个子集合分别排序,然后将排好序的子集合归并为一个集合。

假设仅将n 个元素的集合分成两个子集合。现在需要确定如何进行子集合的划分。一种可能性就是把前面n- 1个元素放到第一个子集中(称为A),最后一个元素放到第二个子集里(称为B)。按照这种方式对A递归地进行排序。由于B仅含一个元素,所以它已经排序完毕,在A排完序后,只需要用程序2 - 1 0中的函数i n s e r t将A和B合并起来。把这种排序算法与I n s e r t i o n S o r t(见程序2 - 1 5)进行比较,可以发现这种排序算法实际上就是插入排序的递归算法。该算法的复杂性为O (n 2 )。把n 个元素划分成两个子集合的另一种方法是将含有最大值的元素放入B,剩下的放入A中。然后A被递归排序。为了合并排序后的A和B,只需要将B添加到A中即可。假如用函数M a x(见程序1 - 3 1)来找出最大元素,这种排序算法实际上就是S e l e c t i o n S o r t(见程序2 - 7)的递归算法。

假如用冒泡过程(见程序2 - 8)来寻找最大元素并把它移到最右边的位置,这种排序算法就是B u b b l e S o r t(见程序2 - 9)的递归算法。这两种递归排序算法的复杂性均为(n2 )。若一旦发现A已经被排好序就终止对A进行递归分割,则算法的复杂性为O(n2 )(见例2 - 1 6和2 - 1 7)。

上述分割方案将n 个元素分成两个极不平衡的集合A和B。A有n- 1个元素,而B仅含一个元素。下面来看一看采用平衡分割法会发生什么情况: A集合中含有n/k 个元素,B中包含其余的元素。递归地使用分而治之方法对A和B进行排序。然后采用一个被称之为归并( m e rg e)的过程,将已排好序的A和B合并成一个集合。

例2-5 考虑8个元素,值分别为[ 1 0,4,6,3,8,2,5,7 ]。如果选定k = 2,则[ 1 0 , 4 , 6 , 3 ]和[ 8 , 2 , 5 , 7 ]将被分别地排序。结果分别为[ 3 , 4 , 6 , 1 0 ]和[ 2 , 5 , 7 , 8 ]。从两个序列的头部开始归并这两个已排序的序列。元素2比3更小,被移到结果序列;3与5进行比较,3被移入结果序列;4与5比较,4被放入结果序列;5和6比较,.。如果选择k= 4,则序列[ 1 0 , 4 ]和[ 6 , 3 , 8 , 2 , 5 , 7 ]将被排序。排序结果分别为[ 4 , 1 0 ]和[ 2 , 3 , 5 , 6 , 7 , 8 ]。当这两个排好序的序列被归并后,即可得所需要的排序序列。

图2 - 6给出了分而治之排序算法的伪代码。算法中子集合的数目为2,A中含有n/k个元素。

template

void sort( T E, int n)

{ / /对E中的n 个元素进行排序, k为全局变量

if (n >= k) {

i = n/k;

j = n-i;

令A 包含E中的前i 个元素

令B 包含E中余下的j 个元素

s o r t ( A , i ) ;

s o r t ( B , j ) ;

m e rge(A,B,E,i,j,); //把A 和B 合并到E

}

else 使用插入排序算法对E 进行排序

}

图14-6 分而治之排序算法的伪代码

从对归并过程的简略描述中,可以明显地看出归并n个元素所需要的时间为O (n)。设t (n)为分而治之排序算法(如图1 4 - 6所示)在最坏情况下所需花费的时间,则有以下递推公式:

其中c 和d 为常数。当n / k≈n-n / k 时,t (n) 的值最小。因此当k= 2时,也就是说,当两个子集合所包含的元素个数近似相等时, t (n) 最小,即当所划分的子集合大小接近时,分而治之算法通常具有最佳性能。

可以用迭代方法来计算这一递推方式,结果为t(n)= (nl o gn)。虽然这个结果是在n为2的幂时得到的,但对于所有的n,这一结果也是有效的,因为t(n) 是n 的非递减函数。t(n) =(nl o gn) 给出了归并排序的最好和最坏情况下的复杂性。由于最好和最坏情况下的复杂性是一样的,因此归并排序的平均复杂性为t (n)= (nl o gn)。

图2 - 6中k= 2的排序方法被称为归并排序( m e rge sort ),或更精确地说是二路归并排序(two-way merge sort)。下面根据图1 4 - 6中k= 2的情况(归并排序)来编写对n 个元素进行排序的C + +函数。一种最简单的方法就是将元素存储在链表中(即作为类c h a i n的成员(程序3 -8))。在这种情况下,通过移到第n/ 2个节点并打断此链,可将E分成两个大致相等的链表。

归并过程应能将两个已排序的链表归并在一起。如果希望把所得到C + +程序与堆排序和插入排序进行性能比较,那么就不能使用链表来实现归并排序,因为后两种排序方法中都没有使用链表。为了能与前面讨论过的排序函数作比较,归并排序函数必须用一个数组a来存储元素集合E,并在a 中返回排序后的元素序列。为此按照下述过程来对图1 4 - 6的伪代码进行细化:当集合E被化分成两个子集合时,可以不必把两个子集合的元素分别复制到A和B中,只需简单地在集合E中保持两个子集合的左右边界即可。接下来对a 中的初始序列进行排序,并将所得到的排序序列归并到一个新数组b中,最后将它们复制到a 中。图1 4 - 6的改进版见图1 4 - 7。

template

M e rgeSort( T a[], int left, int right)

{ / /对a [ l e f t : r i g h t ]中的元素进行排序

if (left < right) {//至少两个元素

int i = (left + right)/2; //中心位置

M e rgeSort(a, left, i);

M e rgeSort(a, i+1, right);

M e rge(a, b, left, i, right); //从a 合并到b

Copy(b, a, left, right); //结果放回a

}

}

图14-7 分而治之排序算法的改进

可以从很多方面来改进图1 4 - 7的性能,例如,可以容易地消除递归。如果仔细地检查图1 4 - 7中的程序,就会发现其中的递归只是简单地重复分割元素序列,直到序列的长度变成1为止。当序列的长度变为1时即可进行归并操作,这个过程可以用n 为2的幂来很好地描述。长度为1的序列被归并为长度为2的有序序列;长度为2的序列接着被归并为长度为4的有序序列;这个过程不断地重复直到归并为长度为n 的序列。图1 4 - 8给出n= 8时的归并(和复制)过程,方括号表示一个已排序序列的首和尾。

初始序列[8] [4] [5] [6] [2] [1] [7] [3]

归并到b [4 8] [5 6] [1 2] [3 7]

复制到a [4 8] [5 6] [1 2] [3 7]

归并到b [4 5 6 8] [1 2 3 7]

复制到a [4 5 6 8] [1 2 3 7]

归并到b [1 2 3 4 5 6 7 8]

复制到a [1 2 3 4 5 6 7 8]

图14-8 归并排序的例子

另一种二路归并排序算法是这样的:首先将每两个相邻的大小为1的子序列归并,然后对上一次归并所得到的大小为2的子序列进行相邻归并,如此反复,直至最后归并到一个序列,归并过程完成。通过轮流地将元素从a 归并到b 并从b 归并到a,可以虚拟地消除复制过程。二路归并排序算法见程序1 4 - 3。

程序14-3 二路归并排序

template

void MergeSort(T a[], int n)

{// 使用归并排序算法对a[0:n-1] 进行排序

T *b = new T [n];

int s = 1; // 段的大小

while (s < n) {

MergePass(a, b, s, n); // 从a归并到b

s += s;

MergePass(b, a, s, n); // 从b 归并到a

s += s;

}

}

为了完成排序代码,首先需要完成函数M e rg e P a s s。函数M e rg e P a s s(见程序1 4 - 4)仅用来确定欲归并子序列的左端和右端,实际的归并工作由函数M e rg e (见程序1 4 - 5 )来完成。函数M e rg e要求针对类型T定义一个操作符< =。如果需要排序的数据类型是用户自定义类型,则必须重载操作符< =。这种设计方法允许我们按元素的任一个域进行排序。重载操作符< =的目的是用来比较需要排序的域。

程序14-4 MergePass函数

template

void MergePass(T x[], T y[], int s, int n)

{// 归并大小为s的相邻段

int i = 0;

while (i <= n - 2 * s) {

// 归并两个大小为s的相邻段

Merge(x, y, i, i+s-1, i+2*s-1);

i = i + 2 * s;

}

// 剩下不足2个元素

if (i + s < n) Merge(x, y, i, i+s-1, n-1);

else for (int j = i; j <= n-1; j++)

// 把最后一段复制到y

y[j] = x[j];

}

程序14-5 Merge函数

template

void Merge(T c[], T d[], int l, int m, int r)

{// 把c[l:m]] 和c[m:r] 归并到d [ l : r ] .

int i = l, // 第一段的游标

j = m+1, // 第二段的游标

k = l; // 结果的游标

/ /只要在段中存在i和j,则不断进行归并

while ((i <= m) && (j <= r))

if (c[i] <= c[j]) d[k++] = c[i++];

else d[k++] = c[j++];

// 考虑余下的部分

if (i > m) for (int q = j; q <= r; q++)

d[k++] = c[q];

else for (int q = i; q <= m; q++)

d[k++] = c[q];

}

自然归并排序(natural merge sort)是基本归并排序(见程序1 4 - 3)的一种变化。它首先对输入序列中已经存在的有序子序列进行归并。例如,元素序列[ 4,8,3,7,1,5,6,2 ]中包含有序的子序列[ 4,8 ],[ 3,7 ],[ 1,5,6 ]和[ 2 ],这些子序列是按从左至右的顺序对元素表进行扫描而产生的,若位置i 的元素比位置i+ 1的元素大,则从位置i 进行分割。对于上面这个元素序列,可找到四个子序列,子序列1和子序列2归并可得[ 3 , 4 , 7 , 8 ],子序列3和子序列4归并可得[ 1 , 2 , 5 , 6 ],最后,归并这两个子序列得到[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]。因此,对于上述元素序列,仅仅使用了两趟归并,而程序1 4 - 3从大小为1的子序列开始,需使用三趟归并。作为一个极端的例子,假设输入的元素序列已经排好序并有n个元素,自然归并排序法将准确地识别该序列不必进行归并排序,但程序1 4 - 3仍需要进行[ l o g2 n] 趟归并。因此自然归并排序将在(n) 的时间内完成排序。而程序1 4 - 3将花费(n l o gn) 的时间。下载本文

显示全文
专题