1.复数的几何意义
(1)复平面的定义
建立了直角坐标系来表示复数的平面叫做复平面 ,x轴叫做实轴 ,y轴叫做 虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
(2)复数与点、向量间的对应
①复数z=a+bi(a,b∈R) 复平面内的点 Z(a,b) ;
②复数z=a+bi(a,b∈R) 平面向量____=(a,b)_____.
2.复数的模
复数z=a+bi(a,b∈R)对应的向量为,则的模叫做复数z的模,记作|z|,且|z|=______.
3.共轭复数
当两个复数实部 相等 ,虚部互为相反数 时,这两个复数叫做互为共轭复数,复数z的共轭复数用表示,即z=a+bi,那么=a-bi ,当复数z=a+bi的虚部b=0时,有__ z=__,也就是说,任一实数的共轭复数仍是 它本身 .
小结 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
问题2 怎样定义复数z的模?它有什么意义?
答 复数z=a+bi(a,b∈R)的模就是向量=(a,b)的模,记作|z|或|a+bi|.
|z|=|a+bi|=可以表示点Z(a,b)到原点的距离.
例2 已知复数z=3+ai,且|z|<4,求实数a的取值范围.
解 方法一 ∵z=3+ai(a∈R),
∴|z|=,
由已知得32+a2<42,∴a2<7,∴a∈(-,).
方法二 利用复数的几何意义,由|z|<4知,
z在复平面内对应的点在以原点为圆心,以
4为半径的圆内(不包括边界),
由z=3+ai知z对应的点在直线x=3上,
所以线段AB(除去端点)为动点Z的集合.
| 交换律 | z1·z2=__ z2·z1____ |
| 结合律 | (z1·z2)·z3=__ z1·(z2·z3)______ |
| 乘法对加法的分配律 | z1(z2+z3)=__ z1z2+z1z3____ |
设z1=a+bi,z2=c+di(c+di≠0),
则==__+i
_______________.
探究点二 共轭复数及其应用
问题 共轭复数有哪些性质,这些性质有什么作用?
答 (1)在复平面上,两个共轭复数对应的点关于实轴对称.
(2)实数的共轭复数是它本身,即z=⇔z∈R,利用这个性质可证明一个复数为实数.
(3)若z≠0且z+=0,则z为纯虚数,利用这个性质,可证明一个复数为纯虚数.
(4)①z·=|z|2=||2;②=2;③=·.
例2 已知复数z满足|z|=1,且(3+4i)z是纯虚数,求z的共轭复数.
解 设z=a+bi(a,b∈R),则=a-bi且|z|==1,即a2+b2=1. ①
因为(3+4i)z=(3+4i)(a+bi)=(3a-4b)+(3b+4a)i,而(3+4i)z是纯虚数,
所以3a-4b=0,且3b+4a≠0. ②
由①②联立,解得或
所以=-i,或=-+i.
小结 本题使用了复数问题实数化思想,运用待定系数法,化解了问题的难点.
1.复数代数形式的乘除运算
(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.
(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.
2.共轭复数的性质可以用来解决一些复数问题.
3.复数问题实数化思想.
复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+bi(a,b∈R),利用复数相等的充要条件转化.下载本文