视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
中南大学计科 machine learning实验报告
2025-10-02 04:36:54 责编:小OO
文档
                                                                     

中南大学       机器学习实验报告

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

                                                                   

班级:     计 科 1202

学号:                

姓名:                   

时间:     2014.10.29 

                  

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

                                                                     

目         录

                         

                         

Programming Exercise 1: Linear Regression

1 .Simple octave function …………………………………………02

    

2.Linear regression with one variable……………………………02

    

3 Linear regression with multiple variables………………………05

Programming Exercise 2: Logistic Regression

1. Logistic Regression ……………………………………………07

  

  

                                                                       2. Regularized logistic regression ………………………………08

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                  

                                                                                                                                             Programming Exercise 1: Linear Regression

1 .Simple octave function

   warmUpExercise.m中增添代码:

      A = eye(5);

   执行结果如下:

       

2.Linear regression with one variable

2.1 Plotting the Data

plotData.m中增添代码:

   plot(x, y, 'rx', 'MarkerSize', 10);        % Plot the data

ylabel('Profit in $10,000s');           % Set the y_axis label

xlabel('Population of City in 10,000s');  % Set the x_axis label

     执行结果如下:

  2.2 Gradient Descent

     computeCost.m中增添代码:

       J = ((X*theta-y)'*(X*theta-y))/2/m;

     执行结果如下:

       

     gradientDescent.m中增添代码:

        theta(1)=theta(1)-alpha*sum((X*theta-y).*X(:,1))/m;

        theta(2)=theta(2)-alpha*sum((X*theta-y).*X(:,2))/m;

     执行结果如下:

       

  2.3 Debugging

2.4 Visualizing J (theta)

   执行结果如下:

        

       

       

3 Linear regression with multiple variables

  3.1 Feature Normalization

    featureNormalize.m中增添代码:

       mu = mean(X,1);          

sigma = std(X);

i = 1;

while i <= size(X, 2);,

          X_norm(:,i) = (X(:,i) - mu(1,i))/sigma(1,i);  

          i = i + 1; 

end;

  3.2 Normal Equations

     normalEqn.m中增添代码:

       theta = pinv(X'*X)*X'*y;

     执行结果如下:

       

   

       

Programming Exercise 2: Logistic Regression

1. Logistic Regression

1.1 Visualizing the data

plotData.m中增添代码:

pos = find(y==1); neg = find(y == 0);

plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 2, ...

'MarkerSize', 7);

plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', ...

'MarkerSize', 7);

  

      执行结果如下:

1.2 Implementation

   sigmoid.m中增添代码:

         g=1./(1+exp(-z));

   

   costFunction.m中增添代码:

        J=  -(y'*log(sigmoid(X*theta)) + (1-y)'*log(1-sigmoid(X*theta)))/m;

        grad= (((sigmoid(X*theta)-y)'*X)/m)';

    执行结果如下:

      

      

     

     

2. Regularized logistic regression

2.1 Visualizing the data

执行结果如下:

2.2Visualizing the data

      degree = 6;

out = ones(size(X1(:,1)));

for i = 1:degree

         for j = 0:i

            out(:, end+1) = (X1.^(i-j)).*(X2.^j);

         end

end

2.3 Cost function and gradient

      costFunctionReg.m中增添代码:          

J= -(y'*log(sigmoid(X*theta))+ (1-y)'*log(1-sigmoid(X*theta)))/m+ (lambda/2/m)*(theta'*theta-theta(1)*theta(1)-theta(2)*theta(2))

        grad= (((sigmoid(X*theta)-y)'*X)/m)';

        tmp=grad;

        tmp=tmp+(lambda*theta/m);

        grad = [grad(1,1);tmp(2:length(theta),1)];

       

执行结果如下:

  

   2.4 Plotting the decision boundary

执行结果如下:

下载本文

显示全文
专题