姓名:_______班级:______成绩:_______
一、选择题(本大题共10小题,每小题5分,共50分)
1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( )
(A)48 (B) (C)96 (D)192
2.棱长都是的三棱锥的表面积为( )
A. B. C. D.
3.长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( )
A. B. C. D.都不对
4、已知正方体外接球的体积是,那么正方体的棱长等于 ( D)
(A) (B) (C) (D)
5、若、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )
A.若,则 B.若,则
C. 若,则 D.若,则
6、如图,在正方体中,分别为,,,的中点,则异面直线与所成的角等于( )
A.45° B.60° C.90° D.120°
7.已知两个平面垂直,下列命题
①一个平面内的已知直线必垂直于另一个平面的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面的无数条直线;
③一个平面内的任一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.
其中正确的个数是( ) A.3 B.2 C.1 D.0
8、如图长方体中,AB=AD=2,CC1=,则二面角
C1—BD—C的大小为( )
A.30° B.45° C.60° D.90°
9、平面与平面平行的条件可以是( )
A.内有无穷多条直线与平行; B.直线a//,a//
C.直线a,直线b,且a//,b// D.内的任何直线都与平行
10、如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F这六个字母之一,现放置成如图的三种不同的位置,则字母A,B,C对面的字母分别为( )
A) D ,E ,F B) F ,D ,E
C) E, F ,D D) E, D,F
选择题答题表
| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 答案 |
11.已知直线b//平面,平面//平面,则直线b与的位置关系为 .
12.正方体的内切球和外接球的半径之比为_____
13如图,△ABC是直角三角形, ACB=,PA平面ABC,此图形中有 个直角三角形
14. 将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:(1)AC⊥BD;(2)△ACD是等边三角形 (3)AB与平面BCD所成的角为60°;(4)AB与CD所成的角为60°。则正确结论的序号为____
三、解答题(15、16、17题分别为8分、10分、12分,共30分)
15.如图,PA⊥平面ABC,平面PAB⊥平面PBC 求证:AB⊥BC
16.在长方体中,已知,求异面直线与所成角的余弦值 。.
17.如图,在四棱锥中,底面,
,,是的中点.
(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面;
(Ⅲ)求二面角的正弦值.
答案:1、B 2.A 因为四个面是全等的正三角形,则
3.B 长方体对角线是球直径,
4.D 5、C 6、B 7、C 8、A 9、D 10、D 11、平行或在平面内;
12、正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是
13、4 14、(1)(2)(4)
15、证明:过A作AD⊥PB于D,由平面PAB⊥平面PBC ,得AD⊥平面PBC,故AD⊥BC,
又BC⊥PA,故BC⊥平面PAB,所以BC⊥AB
16、连接,为异面直线与所成的角.
连接,在△中,,
则.
17、(Ⅰ)解:在四棱锥中,因底面,平面,故.
又,,从而平面.故在平面内的射影为,从而为和平面所成的角.
在中,,故.
所以和平面所成的角的大小为.
(Ⅱ)证明:在四棱锥中,
因底面,平面,故.
由条件,,面.又面,.
由,,可得.是的中点,,
.综上得平面.
(Ⅲ)解:过点作,垂足为,连结.由(Ⅱ)知,平面,在平面内的射影是,则.
因此是二面角的平面角.由已知,得.设,得
,,,.
在中,,,则
.在中,.下载本文