视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2017全国高考一卷理科数学(高清版)
2025-10-02 19:21:13 责编:小OO
文档
绝密★启封并使用完毕前

试题类型:A 2017年普通高等学校招生全国统一考试

理科数学

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3

至5页.

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.

3.全部答案在答题卡上完成,答在本试题上无效.

4.考试结束后,将本试题和答题卡一并交回.

第Ⅰ卷

一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符

合题目要求的.

(1)设集合

2

{|430}

A x x x

=-+<,{|230}

B x x

=->,则A B=

(A)

3

(3,)

2

--

(B)

3

(3,)

2

-

(C)

3

(1,)

2(D)

3

(,3)

2

(2)设(1i)1i

x y

+=+,其中x,y是实数,则i=

x y

+

(A)1(B

(C

(D)2

(3)已知等差数列{}

n

a

前9项的和为27,10

=8

a

,则100

=

a

(A)100(B)99(C)98(D)97

(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是

(A)(B)(C)(D)

(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)

(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是

(A)17π(B)18π(C)20π(D)28π

(7)函数y=2x2–e|x|在[–2,2]的图像大致为

(A)(B)

(C)(D)

(8)若101

a b c

>><<

,则

(A)c c

a b

<(B)c c

ab ba

<(C)log log

b a

a c

b c

<(D)log log

a b

c c

<

(9)执行右面的程序图,如果输入的011

x y n

===

,,则输出x,y的值满足

(A)2

y x

=(B)3

y x

=(C)4

y x

=(D)5

y x

=

(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知

|AB|=,|DE|=C的焦点到准线的距离为

(A)2 (B)4 (C)6 (D)8

(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,a⋂平面ABCD=m,a⋂平面ABA1B1=n,则m、n所成角的正弦值为

(B

1

3

12.已知函数()sin()(0),

24

f x x+x

ππ

ωϕωϕ

=>≤=-

,为()

f x的零点,

4

x

π

=为()

y f x

=图像的对称轴,且()

f x在

5

1836

ππ

⎛⎫

⎝⎭

,单调,则ω的最大值为

(A)11 (B)9 (C)7 (D)5

第II 卷

本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.

二、填空题:本大题共3小题,每小题5分

(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =.

(14)5(2x 的展开式中,x 3的系数是.(用数字填写答案)

(15)设等比数列{ }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。

(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.

(17)(本题满分为12分)

ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B +b A c = (I )求C ;

(II )若c ABC = ABC 的周长. (18)(本题满分为12分)

如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠= ,且二面角D -AF -E 与二面角C -

BE -F 都是60 .

(I )证明平面ABEF ⊥EFDC ;

(II )求二面角E -BC -A 的余弦值.

(19)(本小题满分12分)

某公司计划购买2台机器,该种机器使用三年后

即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.

(I )求X 的分布列;

(II )若要求()0.5P X n ≤≥,确定n 的最小值;

(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?

20. (本小题满分12分)

设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .

(I )证明EA EB +为定值,并写出点E 的轨迹方程;

(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.

(21)(本小题满分12分)

已知函数 ( )=( −2)e + ( −1) 有两个零点.

(I)求a 的取值范围;

(II)设x 1,x 2是 ( )的两个零点,证明: +x 2<2.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,△OAB 是等腰三角形,∠AOB =120°.以⊙O 为圆心, OA 为半径作圆.

(I)证明:直线AB 与O 相切;

(23)(本小题满分10分)选修4—4:坐标系与参数方程

在直线坐标系xoy中,曲线C1的参数方程为

= cos ,

=1+ sin ,

(t为参数,a>0)

。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=cosθ.

(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;

(II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a。(24)(本小题满分10分),选修4—5:不等式选讲

已知函数f(x)= ∣x+1∣-∣2x-3∣.

(I)在答题卡第(24)题图中画出y= f(x)的图像;

(II)求不等式∣f(x)∣﹥1的解集。下载本文

显示全文
专题