--高速公路隧道
1.隧道概况及工程水文地质条件
1.1基础情况介绍
世界最长的双洞高速公路隧道---秦岭终南山公路隧道。该隧道是国家交通规划网内蒙古包头 至广东茂名高速公路在陕西境内的重要路段,也是陕西省"三纵四横五辐射"公路骨架网中西安至安康高速公路沟通秦岭南北地区交通的控制性工程。 秦岭终南山公路隧道北起西安安区五台乡,南抵商洛市柞水县营盘镇,隧道单洞全长18.02公里,双洞长36.04公里。隧道按双向车道高速公路标准建设;隧道净宽10.5米,限高5米;设计车速80公里/小时,总投资31.93亿元。
1.2隧道概况
秦岭是黄河与长江两大水系的分水岭,是西安至安康高速公路必须克 服的天然屏障。秦岭终南山特长隧道位于西康公路西安至柞水段,隧道全长18.020km,为东线、西线双洞四车道,中线间距30m。该隧道是国家公路网规划的西部开发公路干线中的内蒙古阿荣旗至广西北海和银川至武汉两条路线上的共用段,也是陕西省规划的米字型公路网主骨架西康公路中的重要组成部分。它的建成对促进西部开发战略的实施和陕西省与周边省市的经济交流具有十分重要的意义。该隧道由石砭峪垭口翻越秦岭地区的终南山,在隧道东侧与西康铁路秦岭特长隧道相邻。进口位于长安县石砭峪乡青岔村石砭峪河右岸。出口位于柞水县营盘镇小峪街村太峪河右岸。洞内为人字坡,最大纵坡为 1.1%。隧道最大埋深1600m。行车速度为60~80km/h,隧道内路面为水泥混凝土路面
1.3工程水文地质条件
洞身岩性主要以混合片麻岩和混合花岗岩为主,岩石坚硬,岩体完整,受构造影响轻微,节理不发育,围岩类别多为ⅳ、ⅴ类,最大埋深10m。经预测在该段可能发生轻微至中等程度岩爆,局部岩爆强烈。
隧道位于节理裂隙贫水区,地形地貌形态属中山区,岭脊部位切割深度700至1000m。植被较发育,覆盖率达70%。经同位素测试分析及水文地质计算,本地区地下水深度一般小于100m,隧道通过地段可能的单位正常涌水量为95.4m3/d?km,最大涌水量180m3/d?km。水化学类型为hco3?so4-ca?na型水及so4-ca型水,矿化度小于1.0g/l,地下水无侵蚀性。隧道所处地区地表径流水源丰富、充足且水质纯净,均可用于生活及生产用水。
2.隧道整体设计构造
2.1隧道建筑限界及衬砌内轮廓
隧道建筑限界净高5m,净宽10.50m。其中行车道宽2×3.75m;在行车道两
侧设0.50m的路缘带及0.25m的余宽;隧道内两侧设宽度为0.75m的检修道,高于路面0.40m。
衬砌内轮廓设计主要考虑的因素:结合铁路隧道设计及施工经验,尽可能使衬砌圆顺,受力合理,采用曲墙衬砌;结合本隧道拟采用设三竖井纵向运营通风方式,主隧道内尚需在拱顶按一定间距安装射流机进行调压,以满足隧道内风量和洞内合理风速要求(初步计算为6~7m/s左右,满足规范要求,但洞内风速不太 大),同时考虑预留静电除尘装置等;根据隧道交通工程及运营设施的设计,设置排水沟、各种电缆沟、消防管道布设,并满足设备设置、内装修的净空。经比选采用三心圆内轮廓形式,净宽10.92m,净高7.6m。
2.2隧道衬砌设计
参照现行国家标准《工程结构可靠度设计统一标准》(gb50153-92)及《铁路工程结构可靠度设计统一标准》(gb 50216-94)规定的结构可靠度。选定隧道结构的设计基准期暂考虑为100年,安全等级为一级。
衬砌结构的设计是根据秦岭地区的工程地质、水文地质、围岩类别、施工条件并结合铁路隧道的设计成果,类比类似公路隧道的设计经验并进行结构检算后综合确定。洞口段为满足国防要求,采用c25钢筋混凝土模筑衬砌。洞身其余地段均采用曲墙复合式衬砌。iv、v、vi类围岩根据岩爆的程度不同采取相应的锚、喷、网措施。
2.3隧道防排水设计
采用防、截、排、堵相结合,综合治理的原则。达到防水可靠、排水畅通、经济合理、不留后患的目的。
本隧道按洞内正常总涌水量8604.3m3/d,最大涌水量15695.3m3/d,并考虑
1.5倍安全系数作为运营期间设计排水流量。隧道内设置双侧水沟,主要用于隧道地下水的排泄。在初期支护与二次衬砌之间设1.2mm厚eva防水板和300g/m2的无纺布。隧道拱墙设弹簧排水管盲沟。全隧道两侧墙脚设ф100×5mmpvc纵向排水盲沟,与环向盲沟及墙脚泄水孔采用三通连接,在纵向每隔100m设检查井,以便检查清洗。施工缝处设遇水膨胀止水条。为排除车辆带入的水和隧道内清洗的污水及火灾时的消防水,在路面横坡的低侧设ф250mm的圆形预制路面排水沟,间隔100m设一处清洗用的检查井,便于养护管理。在隧道路面下设10cm厚的水泥处理碎石排水基层,将水排入路面水沟。
2.4紧急停车带及横通道
在行车方向的右侧设置紧急停车带,间距500m。紧急停车带长度按停靠大型卡车2~3辆考虑,有效长度30m,全长40m。宽度较正常地段加宽3.0m。 在隧道发生灾害时,为了尽快疏散洞内车辆,便于维修养护,在东、西线隧道间设行车横通道,间距为500m。行车横通道中线与隧道中线斜交,夹角约60°,汽车转弯半径r=15m。每隔2km设一处反向行车横通道。横通道净宽4.5m,净高5.8m。
在隧道发生灾害时,为了使洞内人员尽快疏散、逃逸,两座隧道间设行人横通道,间距250m,其中一半设为的行人横通道,另一半与行车横通道合用。断面净宽2m,净高2.5m。行人横通道与行车横通道间隔布置。
3. 洞门及洞身结构形式
3.1洞门及洞身结构形式
洞门:秦岭终南山公路隧道的洞门采用端墙式洞门。适用于地形开阔、较为稳定的岩质仰坡、地层基本稳定的洞口;其作用在于支护洞口仰坡,并将仰坡水流汇集排出。
洞身:参照现行国家标准《工程结构可靠度设计统一标准》(gb50153-92)及《铁路工程结构可靠度设计统一标准》(gb 50216-94)规定的结构可靠度。选定隧道结构的设计基准期暂考虑为100年,安全等级为一级。衬砌结构的设计是根据秦岭地区的工程地质、水文地质、围岩类别、施工条件并结合铁路隧道的设计成果,类比类似公路隧道的设计经验并进行结构检算后综合确定。洞口段为满足国防要求,采用c25钢筋混凝土模筑衬砌。洞身其余地段均采用曲墙复合式衬砌。iv、v、vi类围岩根据岩爆的程度不同采取相应的锚、喷、网措施。
4.施工通风技术
4.1隧道施工通风方式
隧道施工通风方式可分为巷道通风和风管式通风,而风管式通风又可为压入式、抽出式和混合式通风。
秦岭终南山公路隧道采用长管路混合式通风方式,分别从公路隧道进口、铁路隧道的9通、11通、15通、20通架设风机。
4.2施工通风量的计算
试验段位于公路隧道中部20通处,总长1580m,独头通风长度1300m。其他(9、11、15通)开辟的工作面,通风长度均小于1300m,综合考虑,确定1300m为最大通风长度。隧道施工通风量的计算主要考虑如下技术标准:
1. 供给洞内每人的新鲜空气量q=4.0m3/min;
2. 内燃机车供风量为4.5m3/min;
3. 平导洞内回风流速大于0.25m/min,正洞回风流速大于0.15m/min;
4. 平导一次爆破炸药用量110kg(按掘进3m/循环),正洞一次爆破炸药用量420kg(按掘进3m/循环);
5. 风管百米漏风率β≤1.0%;
6. 风管百米静压损失?p≤70pa;
7. 隧道内粉尘浓度,含有10%以上游离si02的水泥粉尘为2mg/m3,含有10%以下游离si02的水泥粉尘为6mg/m3,si02含量在10%以下不含有毒物质的矿物性和植物性粉尘为10 mg/m3;
8. 隧道内气温不超过28℃;
9. 炮烟的抛掷长度l=30m;
根据上述的通风技术标准,在施工中所需风量为
q=qp+qmax=q*n*k+qmax
式中qp一洞内同时工作人数最多时所需风量,qp一q*n*k,m3/min; q-供给洞内每人的新鲜空气量q=4.0m3/(人min);
n-隧道内最多工作人数,取60人;
k-通风等级,特长隧道施工通风取1.15;
qmax一下述各种情况的最大值:有缺氧空气时,挤压、冲淡爆破后有害气体,挤压、冲淡施工车辆排放的有害气体,处理有关作业产生的粉尘,降低作业环境的高温等,m3/min。
有缺氧空气时所需通风量
ql=c*v/(co一c)
式中:ql一有缺氧空气时所需通风量;
v一缺氧空气涌出量,以2m3/min计;
c一隧道中空气氧气浓度,以17%计;
co一新鲜空气中氧气浓度,以21%计。
爆破后所需风量
q2=in[a*l/(r*t)]=0.386p/(r*t)
式中q2一爆破后所需风量,m3/ min;
r-通风效率,以%计;
t一所需通风时间,以30min计;
p一爆破后co的发生量,p=a*?l*β*x;
p一co的卫生标准值,30mg/m3;
a一隧道净断面面积,取85m2;?l一次爆破进尺,以3m计;
β一爆破lm,岩石消耗炸药量,以1.4kg/m3计;
x一炸药所产生的有害物质即co含量,mg/m3。
施工机械所需通风量
q3=hs*qs*αs
式中q3一施工机械尾气排放所需通风量,m3/min;
hs一施工机械总功率,kw;
qs一施工机械单位时间、单位功率所需通风量,以4.5m3/min ?kw计; αs一施工机械平均工作效率,以%计。
按允许最低风速计算所需通风量
q4=a*v
式中v一允许最低风速,取0. 2m/s;
a一隧道净断面面积,m2。
求qmax
qmax=max{ql,q2,q3,q4}
设计控制通风量计算
qp=4.0*60*1.15=276m3/ min
q1=2*17%/(21%一17%)=8.5m3/ min
q2=0.386*85*3*1.4*500/(0.5*30*30)=in[85*30/(0.5*30)]=in170=153m3/ min q3=750*0.735*4.s*0.5=1240m3/ min(无轨运输情况)
q3==450*0.735*4.5*0.5=745m3/ min(有轨运输情况)
q4==60*0.2*55=1020m3/ min
所以无轨运输情况下篇二:大坡山隧道施工调查报告
施 工 调 查 报 告
由我昆玉项目部隧道分部承建的昆阳至玉溪铁路扩能改造工程站前ⅱ标大坡山隧道,我项目部组建后,立即组织人员查阅已掌握的设计图纸和相关文件、资料,根据本工程特点,组织技术、环保、物资、设备等有关部门对工程内、外部环境进行了详细的调查。 1、 工程概况
1.1、工程位置、规模、数量及特点
大坡山隧道位于玉溪市北城镇西北部边缘山区,按200km/h双线隧道设计,进口里程为dk25+965,在dk25+9.97处与岔庆沟双线特大桥相连,出口里程为d3k28+412,在d3k28+415.35处与大连池双线大桥相连,隧道总长2447m。其中ⅳ级复合550m;ⅴ级复合420m;ⅴ级抗震848m;明洞衬砌14m,具体数量见下表:
进口端地形陡峻且紧邻桥台,灰岩地段岩溶发育,施工中遇突水突泥风
险大,为避免桥隧施工干扰、减小施工风险,同时为满足施工工期要求,结合地形、地质条件于dk27+170处线路左侧设置横洞,隧道竣工后,横洞作为永久的救援通道,洞口采用栅栏门封堵,以防人畜误入,危及行车安全。
横洞下方为既有昆玉铁路,洞口距既有铁路仅有30m,洞口开挖采取控制爆破或非爆破施工,为避免碎石飞溅对既有铁路运营造成影响,在横洞下方砌筑挡墙、增设防护网,设置范围为横洞中线左右侧各30m。同时在既有铁路附近设专职安全员,并及时与当地铁路运输部门取得联系,以确保铁路运营安全。
出口下方约40m外为天然气库,洞口开挖采用人工配合机械开挖,设置安全哨所,隧道掘进一定深度后,根据安全震速对天然气罐的影响确定何时采用钻爆开挖,以保证天然气库安全。 1.2、 地形情况
大坡山隧道地处玉溪盆地北西侧边缘地中山区,地形起伏较大,横向冲沟发育,地面高程1690~1990m,相对高差200~300m,自然横坡20°~40°,局部陡峻,隧道最大埋深约190m。 1.3、气候特征
本标段所在区域属中亚热带湿润季风气候,年平均气温在16℃左右,年内温度变化不大,最热月与最冷月的月平均温差一般在10℃以内,以春秋气候为主,冬、夏季短,春、秋季长,降雨不多,年平均降雨量约800-950毫米,雨日130-150天,无霜期244 -365天,相对湿度68-79。暴雨天气主要集中在5-9月,集中了全年降雨量的80-90%。 1.4、 工程地质特征
1.4.1地层岩性
隧道穿越地层岩性主要为前震旦系昆阳群美党组(pt1m)板岩夹炭质板岩、灰岩,大龙口组(pt1d)泥质灰岩、灰岩及断层角砾、断层泥。由于测区新构造运动强烈,断层、褶皱构造发育明显。 1.4.2断层
隧道穿越断层有大凹村断层、大坡山推测断层、香炉山断层。其中大凹村断层为逆断层,断层走向近sn向,倾向w、倾角约60~70°,该断层位于隧道进口,于地表dk25+900~dk26+000通过线路,与线路斜交角约45°,断层破碎带宽约100m,由断层角砾组成,原岩成分为灰岩,泥质灰岩,挤压破碎剧烈;大坡山推测断层走向约n45°w,与线路相交于dk27+110,交角约90°,倾向、倾角不详,破碎带宽1~5m,据地质探孔dz-dps-2孔揭示其破碎带主要由断层泥组成,呈灰黑、黑色夹蓝灰色,原岩成分为板岩;香炉山断层为区域性逆断层。据区域地质资料显示,该断层近sn向延伸,倾向e、倾角45~50°,切穿昆阳群大龙口组和美党组两套地层,e盘为pt1d地层,w盘为pt1m地层,该断层于地表dk27+540~dk27+660通过线路,与线路斜交角约25°,断层破碎带宽约80~120m,由断层角砾组成,原岩成分为板岩、变质砂岩,挤压破碎剧烈,断层通过地区沟坡面完整性较差断层带为可溶岩与非可溶岩接触带,可能构成阻水带,对隧道施工影响比较大。
1.4.3危岩、落石
隧道进口端地形陡峻,高差大,受地质构造影响剧烈,岩体破碎,坡面零星分布松动岩块,施工及运营过程中可能产生落石,施工时应对上部松动岩块予以清除或加固,确保安全。
1.4.4顺层
隧道穿越区右侧挖方边坡存在顺层危害,施工中应加强抗滑档护,隧道需加强衬砌,顺层地段见下表:
根据现场实测,取岩层间内摩擦角ψ=18°,凝聚力c=12kpa
1.4.5有害气体
由于dk27+680~出口段为板岩夹炭质板岩,有瓦斯局部聚集可能,施工期间需加强有害气体监测,隧道内加强通风。 1.5、 水文地质特征 1.5.1 地表水
测区位于玉溪盆地西北部中低山区斜坡区,与玉溪盆地相邻,为珠江水系。地表主要水系与山脉多呈北西或近南北向展布,灰岩、泥质灰岩区地表水系较发育,但多为季节性溪沟。发育于可溶岩与非可溶岩接触的溪沟有常年流水,但水量小,季节性变动大。地表水系以坡面型构造溶蚀沟谷发育为特征,坡面沟谷短而陡,呈v字型,沟底无水。 1.5.2 地下水
地下水的赋存与分布主要受地质构造、地形地貌、岩性及气候等因素的影响,区域内地下水类型根据地下水赋存条件划分为孔隙潜水、基岩裂隙水篇三:隧道调查报告
戴云山隧道调查报告
(一) 工程概况
戴云山隧道采用双线单洞方案。隧道进口位于三明市尤溪县中仙乡剑溪村,出口位于福州市永泰庆镇梅楼村。隧道进口里程dk422+805,出口里程dk450+335,全长27.53km。是向莆铁路上最长的隧道和控制性工程。
(二) 地形、地貌
隧道横穿戴云山山脉,山脉主要走向为北北东~南南西,场区以构造剥蚀中山为主,山峰林立,地形险峻,沟谷幽深,植被发育。自然坡度一般30°~50°,多呈'v'字形,局部50°~70°,为悬崖峭壁。
(三) 工程地质及水文地质概况
隧址区属华南地层区东南沿海分区之闽东地层小区,处闽东火山断拗带福鼎~云霄火山断拗带中段,位于福建东部重力梯度带上,将乐~湄洲湾北西向断裂斜穿西南部、南北向的浦城~永泰断裂带贯穿西部(长庆一带),北东东向闽江口~永定断裂带在测区的东南部穿过,测区内主要发育吉花~杨梅和下丰~大浦北东向断裂带、古迹口~安村和谷洋~坂尾北西向断裂带、安宁~盖洋和大泉~三峰南北向断裂带。
隧道区地表水系属闽江流域,大部分地区为大樟溪、梅溪支流,分南东、北西两侧排泄,西北为尤溪水系,南东为永泰水系。由于地形高差大,水系多呈树枝状,发育"v"形河谷,河床狭窄,纵坡降 1
大,水流较急,排水通畅。旱季流量小,雨季流量增大数倍~数十倍。地表水受大气降水补给,向两侧坡脚排泄,由于隧址区岩石裂隙较发育,地表水的下渗是地下水的补给源。隧道预测最大出水量为108425 m3/d。
(四) 初拟进口洞门里程、洞门形式
进口里程:dk422+805;初拟采用柱式洞门,边仰坡坡率为1:
1.25。
(五) 初拟出口洞门里程、洞门形式
出口里程:dk450+335;初拟采用帽檐斜切式洞门,边仰坡坡率为1:1.25。
(六) 初拟衬砌结构类型
隧道采用单线电化铁路隧道复合衬砌。
(七) 初拟隧道防排水措施
隧道洞口设置截水沟和排水沟,洞内采用双侧水沟。洞内环向采用软式透水管盲沟,边墙两侧采用纵向盲沟排水。
(八) 施工方法
ⅴ级围岩采用短台阶法施工,ⅳ、ⅲ级围岩采用台阶法施工,ⅱ级围岩采用全断面法施工。
(九) 施工辅助坑道设置
为满足钻爆法施工工期要求,在隧道洞身处设置七座无轨运输斜井。
2
上溪边斜井长度1740m,位于线路左侧,与左线线路中线交于dk424+708里程处,与线路前进方向夹角90度。
官洋尾斜井长度2314m,位于线路左侧,与左线线路中线交于dk426+188里程处,与线路前进方向夹角90度。
小吟斜井斜井长度27m,位于线路左侧,与左线线路中线交于dk430+133里程处,与线路前进方向夹角131.02度。
竹林边斜井斜井长度2185m,位于线路左侧,与左线线路中线交于dk433+345里程处,与线路前进方向夹角90度。
江下斜井斜井长度2063m,位于线路左侧,与左线线路中线交于dk435+6里程处,与线路前进方向夹角134.42度。
排长斜井斜井长度2236m,位于线路右侧,与左线线路中线交于dk439+878里程处,与线路前进方向夹角38.98度。
歧尾斜井斜井长度2343m,位于线路右侧,与左线线路中线交于dk443+550里程处,与线路前进方向夹角143.98度。
(十) 通风方案
隧道施工通风主要采用长管路独头压入式通风方案设计,运营通风采用射流风机+轴流风机合流排出式通风方式。
(十一) 施工场地、施工便道、施工用水及用电条件
隧道进口位于剑溪村一片梯田上的民居旁,与x733县道相邻,需要修建施工便道从县道引入进口施工场地。隧道进口前为剑溪支流,施工取水方便,施工用电也便捷。
3
隧道出口位于长庆镇梅楼村的山坡梯田上,需要修建0.8km的施工便道从x125县道引入施工场地。隧道出口施工用水用电均便捷。
七处斜井口均需要修建不同长度的施工便道或加固原有的村道,施工用水方便,但施工用电需要引入。
(十二) 弃碴处理
(十三) tbm运输条件和拼装场地
隧道进口tbm运输由京福高速公路从尤溪出口下来后经s304省道、s206省道从清溪口过尤溪走x733县道到剑溪村。进口前有一大片水稻田,填高平整以后即可做为tbm的拼装场地。
隧道出口tbm运输由京福高速公路从金沙出口下,经x125县道抵达梅楼村。出口前方为梯田,填高平整后可做为tbm拼装场地。 4
(十四) 其他
隧道埋深较深,周边山体较高,斜井位置的选择相对较困难,无轨运输斜井比较长,竖直坡度比较大。
部分斜井施工通往困难,部分斜井位于山中的村庄附近,仅有盘山沙石路通往,路线曲折较大,山体较陡,行走大型机车困难。
隧道较长,弃碴量大,占地较多,普遍山凹中均为农田,占用耕地较多,需通及有关部门商议。
5篇四:梅花山隧道地质调查报告
编号:gz-梅花山-01
谷竹高速公路土建施工第15标段梅花山隧道
隧道地质调查报告
2010年第012期【总第012期】
中国科学院武汉岩土力学研究所
湖北谷竹高速公路隧道超前地质预报与监控量测咨询项目经理部
二〇一一年一月十七日
1.1 隧道概况
本隧道位于十堰市房县青峰镇梅花山村附近,隧道轴线方向约262°,呈东西向展布。左洞起讫桩号为zk81+430~zk82+430,全长1000m,最大埋深约126.5m;右洞起讫桩号为yk81+430~yk82+442,全长1012m,最大埋深约130.2m,属于长隧道。
1.2 地形地貌
隧址区地貌单元属构造剥蚀的低山地区,隧道穿越段地面标高在401.2~528.3m。地形上表现为山顶较平缓,进、出洞口坡面较陡,坡度约30°~40°,进口处人为活动较大,岩体风化严重,因修筑乡村公路,有较厚的填土,出洞口山坡植被发育,水土保持较较好,植被主要为灌木。隧道进、出口均有村级路与省道s305 相连,交通较便利。
(1) yk81+430~yk81+780(zk81+430~zk81+760)段
本段长350m,为隧道进口段,由出露、揭露的围岩可发现本段岩体破碎,自稳能力差。隧道进口段仰坡较为陡峻,坡度约为40°~45°,坡面表层残坡积土层覆盖,滚石较多,坡面上植被茂盛(如图1所示)。进口左幅有一冲沟,沟内植被茂盛,滚石较多,土质疏松,雨季时地表水汇集于洞口,应加强疏排措施(如图2所示)。右幅右上方有一冲沟,受地表径流冲刷严重,植被不甚发育,雨季时地表水汇集于右洞洞口(如图3所示),施工时应及时采取措施,其上方有一村级公路,村级公路上方为农耕田,土质疏松,坡积土覆盖厚度较大(如图4所示);有基岩出露,为强~中风化片岩,产状25°∠41°,呈灰绿色,岩体节理裂隙发育,较破碎(如图5所示)。进口右幅右侧有溪水流过(如图6所示)。
图1 梅花山隧道进口段仰坡
图2 梅花山隧道进口左幅左侧冲沟
图3梅花山隧道进口段右幅右上方冲沟
图4 梅花山隧道进口农耕田
图5 梅花山隧道进口段出露基岩
图6梅花山隧道进口段右幅右侧小溪篇五:隧道工程安全生产调研报告
隧道工程安全生产调研报告
一、水利水电项目施工现场均位于野外高山沟壑,现场安全文明施工难度大。水电水利工程和房建工程施工相比,具有施工场地狭窄,施工环境恶劣,受自然环境和地质灾害影响较大等特点,因此大部分隧道施工现场不能进行封闭施工,一般处于开放形式,材料堆码、设备安放、材料加工场地布置较零乱,现场文明施工、形象宣传等工作难度大,现场施工标化水平较低。
二、水利水电工程施工项目处于分散的地州县,上级公司监管难度较大。因此,项目在安全管理方面随意性大,存在安全技术方案编制不及时,审批手续不完善,现场安全技术交底不到位等,特别是集团要求的每周"四个一"安全管理工作大多数不能提供文字资料进行核查。
三、专业分包队伍技术素质、管理水平对工程安全生产的影响较大。隧道工程项目由于专业施工技术要求高,基本都是分包给外省专业队伍进行施工,选择整体实力强的专业分包单位,无疑对生产安全是一种保证。例如在某某工程项目,同一条隧道施工,入水口段和出水口段分别由两家分包单位进行。出水口段分包队伍隧道掘进采用有轨电车进行出渣运输,机械化程度高,降低了作业人员的劳动强度,同时受限空间作业面人员减少了,也降低了劳动者接触危险源发生危险伤害的几率;另外电车与柴油机动车相比,不产生尾
气,可以减少受限空间内有害烟尘的危害;该分包段洞内地面平整,设置沟道排水通畅,洞内施工临时用电线路"三相五线"设置整齐规范,特别是唯一、一家设置了洞内外通信联络电话;施工中严格进行进出洞登记管理,现场施工安全管控基本到位。
四、输水隧道受限空间狭窄,应急救援设施设置困难。输水隧道洞径一般都在3米左右,由于要满足出渣运输道路的要求,一般都没有布设逃生管道的位置,加之外省隧道施工人员封建迷信思想严重,认为设置应急箱等是不吉利的,对设置应急救援设施有抵触,因此,所有隧道施工项目都没有设置应急救援设施。
五、现场临时施工用电使用、管理不规范,成为隧道施工安全的一大隐患。隧道施工现场由于都处于野外高山沟壑地段,加之分包单位用电管理人员技术水平参差不齐,因此施工用电外线和洞内线路大部分设置均不规范,出现用电线路私拉乱接,配电线路随意缠绕在钢筋、钢管上,配电箱内不设置漏电保护器,配电箱破损,配电箱不上锁等安全隐患;另外,由于隧道狭长,烟尘、粉尘和喷浆雾尘等原因,导致洞内采光照明度较低,如果采用36伏安全电压进行照明根本满足不了要求,因此,所有项目隧道内照明均采用220伏供电线路,满足不了地下、潮湿、狭窄空间安全用电的规定要求,存在一定的安全用电隐患;在掌子面施工段,为了增
加照明度,有的项目违规采用碘钨灯进行照明,碘钨灯外壳不接pe保护零线,安装高度和固定位置也无法满足要求,存在较大安全隐患。如何满足隧道施工用电和照明安全是隧道施工项目今后应该解决的一大技术问题。
以上是第三检查组此次隧道桥梁检查工作的体会,由于专业知识有限,不足之处请给予指正。下载本文