视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
论文《浅谈小学数学中的概念教学》
2025-10-05 17:08:48 责编:小OO
文档
浅谈小学数学中的概念教学

概念是客观事物的本质属性在人们头脑中的反映,概念教学的过程是认识从感性上升到理性的过程。小学生年龄小,生活经验不足,知识面窄,构成了概念教学中的障碍。而数学概念又是小学数学基础知识的一项重要内容,是学生理解、掌握数学知识的首要条件,也是进行计算和解题的前提。因此,重视数学概念教学,对于提高教学质量有着举足轻重的作用。那又如何搞好小学数学概念教学呢?下面我粗浅地谈谈自己的一些看法:概念教学一般都分四个阶段:引入 、形成 、巩固 、发展。 

一、概念的引入

1、概念的引入是概念教学的第一步。教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,把“纯粹”的数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如,“分数的初步认识”的教学,主要要说明“谁”的几分之几,为了说明这一点,可出示不同形状和大小的图形,折出它们的二分之一,让学生明白虽然都是二分之一,却表示不同的大小,所以一定要说明“谁”的二分之一。

2、同时,在概念的引入中要格外做到旧知识的迁移。 

      任何一个数学概念都是在以往概念的基础上演变发展而来的,前一个概念是后一个概念的基础和推理依据,旧概念铺垫不好,就会影响新概念的建立,如,在“整除”概念基础上建立了“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。 在几何知识中,由长方形的面积导出正方形、平行四边形、三角形、梯形等的面积公式。

3、最后还可以从计算引入新概念。有些概念不便于用具体事例来说明,而通过计算才能揭示数与形的本质属性。如,教学“互为倒数”这个概念时,可先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9……,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这样的乘积是1的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。

二、概念的形成 

形成概念的教学是整个概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。

    1、概念语言的本质属性

    一个数学概念建立后,需要对其本质进行剖析,也就是说要对该概念的本质属性再一一从定义中分离出来加以说明,把握共知要素。对概念中的关键词语要着重讲解,对概念的名称、符号要交代清楚,也就是说要对概念描述的语言做到准确把握。如,什么叫循环小数?课本是这样定义的:“一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的数叫循环小数。”这里要抓住两点,一是前提是一个数的小数部分,与整数部分没关系,二是属性是一个数字或几个数字重复出现,且是依次不断的。明确了这两点就能迅速的判断出某些数字是不是循环小数,如7777.777、7.32132、2.2020020002……这样的小数都不具备循环小数的本质属性,所以都不是循环小数。而0.324324……、0.146262……具备了循环小数的本质属性,它们都是循环小数。 

2.注意比较有联系的概念的异同。

数学中的一些概念是相互联系的,既有相同点,又有不同之处。划清了异同界线,才能建立明确的概念。而对这类概念,应用对比的方法找出它们之间的联系、区别。使学生更加准确地理解和牢固记忆学过的概念。如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。

3、运用变式,突出概念的本质属性。

概念是客观事物本质属性的概括。学生理解概念的过程即是对概念所反映的本质属性的把握过程,在教学过程中,通过变式的运用,可以使要领的本质属性更加突出,达到化难为易的效果。例如,在三角形概念教学中,通过不同形态(锐角三角形、直角三角形和钝角三角形)不同面积,不同位置的三角形与一些类似三角形的图形进行比较,就可以帮助学生分清哪些属于三角形的本质属性,哪些属于三角形的非本质属性,从而准确地理解三角形的概念。在直角三角形概念的教学中,让学生接触不同位置不同形态的一些直角三角形如平放,斜放,从而使生理解只要有一个角是直角三角形,就是直角三角形即直角三角形的概念。

三、概念的巩固 

   概念的形成是一个由个别到一般的过程,而概念的运用则是一个由一般到个别的过程,它们是学生掌握概念的两个阶段。通过运用概念解决实际问题,可以加深、丰富和巩固学生对数学概念的掌握,并且在概念运用过程中也有利于培养学生思维的深刻性、灵活性、敏捷性、批判性和独创性等等,同时也有利于培养学生的实践能力。教学中主要是通过练习来达到巩固概念的目的的。练习是使学生掌握基础知识和技能,培养和发展学生思维能力的重要手段。但在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学概念,有利于发展学生的思维。如为了帮助学生巩固新学概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清容易混淆的概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学概念与其他知识的横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。但千万要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“加法和减法的关系”后,可以安排以下三个层次的练习:

  a. 看谁填得又对又快! 

237+69=306     502-387=115

306-□=237     387+□=502

□-237=69      □-115=387

  这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。

  b. 填空.说一说你是怎样想的.

  这一层是发展练习,它是在学生已基本掌握了概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。

  c. 求未知数X。

  X+265=930     465+X=710

  225= 198+X             101= X+37   

这一层是综合练习,它可以使学生进一步深化概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。

四、概念的发展。

这是不可缺少的一个环节。因为,一方面概念之间有着纵横交错的内在联系。如:除法、分数、比之间的内在联系,在学完“比”后为学生揭示清楚,有助于学生理解新概念,复习旧知识。另一方面,教学概念,既要重视概念的阶段性,又要注意到概念发展的连续性,不要在一个知识段中把概念讲“死”,以免影响概念的发展和提高,也不要过早地抽象而超越学生的认识能力。要有计划地发展概念的含义,按阶段发展学生的抽象概括能力,要使前一阶段的教学为后一阶段的概念发展做好孕伏。如“除法的意义”,二年级只能让学生认识为:平均分和一个数里面包含着多少个另一个数,只有到了四年级才能让学生抽象出“除法意义”的确切含义。

总之,概念教学的各阶段不能截然分开。引入后要紧接着形成,形成后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在教学中,要结合概念的特点和学生的实际,灵活掌握使用。优化数学概念教学,培养学生的创新思维。

                                           下载本文

显示全文
专题