视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2016年全国统一高考数学试卷(文科)(全国三卷)
2025-10-05 17:11:29 责编:小OO
文档
2016年全国统一高考数学试卷(文科)(新课标Ⅲ)

一、选择题(共12小题,每小题5分,满分60分)

1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AB=(  )

A.{4,8}    B.{0,2,6}    

C.{0,2,6,10}    D.{0,2,4,6,8,10}    

2.(5分)若z=4+3i,则=(  )

A.1    B.﹣1    C.+i    D.﹣i    

3.(5分)已知向量=(,),=(,),则∠ABC=(  )

A.30°    B.45°    C.60°    D.120°    

4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(  )

A.各月的平均最低气温都在0℃以上    

B.七月的平均温差比一月的平均温差大    

C.三月和十一月的平均最高气温基本相同    

D.平均最高气温高于20℃的月份有5个    

5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )

A.    B.    C.    D.    

6.(5分)若tanθ=,则cos2θ=(  )

A.    B.    C.    D.    

7.(5分)已知a=,b=,c=,则(  )

A.b<a<c    B.a<b<c    C.b<c<a    D.c<a<b    

8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3    B.4    C.5    D.6    

9.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=(  )

A.    B.    C.    D.    

10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(  )

A.18+36    B.54+18    C.90    D.81    

11.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )

A.4π    B.    C.6π    D.    

12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )

A.    B.    C.    D.    

 

二、填空题(共4小题,每小题5分,满分20分)

13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为     .

14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移     个单位长度得到.

15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=     .

16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是     .

 

三、解答题(共5小题,满分60分)

17.(12分)已知各项都为正数的数列{an}满足a1=1,an2﹣(2an+1﹣1)an﹣2an+1=0.

(1)求a2,a3;

(2)求{an}的通项公式.

18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

注:年份代码1﹣7分别对应年份2008﹣2014.

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;

(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.6.

参考公式:相关系数r=,

回归方程=+t中斜率和截距的最小二乘估计公式分别为:

=,=﹣.

19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.

(Ⅰ)证明MN∥平面PAB;

(Ⅱ)求四面体N﹣BCM的体积.

20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.

(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;

(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

21.(12分)设函数f(x)=lnx﹣x+1.

(1)讨论f(x)的单调性;

(2)证明当x∈(1,+∞)时,1<<x;

(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx.

 

请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]

22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.

(1)若∠PFB=2∠PCD,求∠PCD的大小;

(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.

 

[选修4-4:坐标系与参数方程]

23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.

(1)写出C1的普通方程和C2的直角坐标方程;

(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.

 

[选修4-5:不等式选讲]

24.已知函数f(x)=|2x﹣a|+a.

(1)当a=2时,求不等式f(x)≤6的解集;

(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.

 下载本文

显示全文
专题