一.选择题(共12小题,每小题3分,共36分).
1.下列图案中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
2.下列四组线段中,可以构成直角三角形的是( )
A.2,3,4 B.1,,3 C.1,1,2 D.5,12,13
3.函数中,自变量x的取值范围是( )
A.x≥0 B.x>0且x≠1 C.x>1 D.x≥0且x≠1
4.如图,在△ABC中,∠C=90°,AC=4m,DC=AD,BD平分∠ABC,则点D到AB的距离等于( )
A.1 B. C.2 D.
5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为( )
A.4 B.6 C.8 D.10
6.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是( )
A.90° B.100° C.120° D.150°
7.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.两条对角线垂直且平分的四边形是正方形
D.四条边都相等的四边形是菱形
8.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是( )
A.2 B.3 C. D.
9.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )
A.(3,4) B.(4,3) C.(﹣1,﹣2) D.(﹣2,﹣1)
10.两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是( )
A. B.
C. D.
11.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为( )
A. B. C.2 D.4
12.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是( )
A.5 B.6 C.7 D.8
二.填空题(共6小题,每小题3分,共18分)
13.点A(﹣2,1)关于y轴对称的点的坐标为 .
14.将直线y=2021x﹣2018的图象向下平移2个单位后,所得的直线是 .
15.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .
16.把容量是的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是 .
17.如图,在平行四边形ABCD中,E,F两点均在对角线AC上.要使四边形BEDF为平行四边形,在不添加辅助线的情况下,需要增加的一个条件是 (写出一个即可).
18.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是 .
三.解答题(共2小题,每小题6分,共12分)
19.已知在平面直角坐标系xOy中,一次函数的图象经过(3,2)与(﹣1,﹣6)两点.
(1)求这个一次函数解析式;
(2)若此一次函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积.
20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)将△ABC向右平移4个单位得到的△A1B1C1,请画出△A1B1C1;
(2)△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2;
(3)求出△A2B2C2的面积.
四.解答题(共2小题,每小题8分,共16分)
21.某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.
根据以上信息,解答下列问题:
(1)本次调查的学生数为 人;
(2)图表中的a、b、c的值分别为 , , ;
(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多 人;
(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.
四月日人均诵读时间的统计表
| 日人均诵读时间x/h | 人数 | 百分比 |
| 0≤x≤0.5 | 6 | |
| 0.5<x≤1 | 30 | |
| 1<x≤1.5 | 50% | |
| 1.5<x≤2 | 10 | 10% |
| 2<x≤2.5 | b | c |
22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)
五.解答题(共2小题,每小题9分,共18分)
23.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
24.如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC的中点,延长BM至点E,使EM=BM,连接DE.
(1)求证:△AMB≌△CND;
(2)若BD=2AB,且AB=5,DN=4,求四边形DEMN的面积.
六.综合题(共2小题,每小题10分,共20分)
25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)请直接写出不等式kx+b﹣3x>0的解集.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.
26.已知,▱ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,点P的速度为每秒1cm,点Q的速度为每秒0.8cm,设运动时间为t秒,若当以A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
参
一.选择题(共12小题,每小题3分,共36分)
1.下列图案中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
解:A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,又是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选:B.
2.下列四组线段中,可以构成直角三角形的是( )
A.2,3,4 B.1,,3 C.1,1,2 D.5,12,13
解:A、22+32≠42,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;
B、12+()2≠32,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;
C、12+12≠22,不符合勾股定理的逆定理,不能构成直角三角形,故本选项不符合题意;
D、52+122=132,符合勾股定理的逆定理,能构成直角三角形,故本选项符合题意.
故选:D.
3.函数中,自变量x的取值范围是( )
A.x≥0 B.x>0且x≠1 C.x>1 D.x≥0且x≠1
解:依题意,得,解得x≥0且x≠1,
故选:D.
4.如图,在△ABC中,∠C=90°,AC=4m,DC=AD,BD平分∠ABC,则点D到AB的距离等于( )
A.1 B. C.2 D.
解:如图,过D作DE⊥AB于E,
∵∠C=90°,
∴CD⊥BC,
∵BD平分∠ABC,CD⊥BC,DE⊥AB,
∴DE=CD,
∵CD=,AC=4m,
∴m,
∴m,
故选:B.
5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为( )
A.4 B.6 C.8 D.10
解:多边形的内角和是:3×360=1080°.
设多边形的边数是n,则
(n﹣2)•180=1080,
解得:n=8.
即这个多边形的边数是8.
故选:C.
6.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是( )
A.90° B.100° C.120° D.150°
解:连接AE,
∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,
∴AC=20cm,
∵菱形的边长AB=20cm,
∴AB=BC=20cm,
∴AC=AB=BC,
∴△ABC是等边三角形,
∴∠B=60°,
∴∠DAB=120°.
故选:C.
7.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.两条对角线垂直且平分的四边形是正方形
D.四条边都相等的四边形是菱形
解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
B、四个内角都相等的四边形是矩形,故本选项正确;
C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
D、四条边都相等的四边形是菱形,故本选项正确.
故选:C.
8.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是( )
A.2 B.3 C. D.
解:由作法得CE⊥AB,则∠AEC=90°,
AC=AB=BE+AE=2+1=3,
在Rt△ACE中,CE==.
故选:D.
9.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )
A.(3,4) B.(4,3) C.(﹣1,﹣2) D.(﹣2,﹣1)
解:由A(﹣4,﹣1)的对应点A′的坐标为(﹣2,2 ),
得坐标的变化规律为:各对应点之间的关系是横坐标加2,纵坐标加3,
所以点B′的横坐标为1+2=3;纵坐标为1+3=4;
即所求点B′的坐标为(3,4).
故选:A.
10.两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是( )
A. B.
C. D.
解:A、∵一次函数y1=ax+b的图象经过一三四象限,
∴a>0,b<0;
由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;
B、∵一次函数y1=ax+b的图象经过一二三象限,
∴a>0,b>0;
由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;
C、∵一次函数y1=ax+b的图象经过一三四象限,
∴a>0,b<0;
由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;
D、∵一次函数y1=ax+b的图象经过一二四象限,
∴a<0,b>0;
由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.
故选:C.
11.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为( )
A. B. C.2 D.4
解:∵矩形ABCD,
∴AD∥BC,AD=BC,AB=CD,
∴∠EFC=∠AEF,
由折叠得,∠EFC=∠AFE,
∴∠AFE=∠AEF,
∴AE=AF=5,
由折叠得,
FC=AF,OA=OC,
∴BC=3+5=8,
在Rt△ABF中,AB==4,
在Rt△ABC中,AC==4,
∴OA=OC=2,
故选:C.
12.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是( )
A.5 B.6 C.7 D.8
解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,
∵BE=1,BC=CD=4,
∴CE=3,DE=5,
∴BP′+P′E=DE=5,
∴△PBE周长的最小值是5+1=6,
故选:B.
二.填空题(共6小题,每小题3分,共18分)
13.点A(﹣2,1)关于y轴对称的点的坐标为 (2,1) .
解:根据平面内关于y轴对称的点,纵坐标相同,横坐标互为相反数,
已知点A(﹣2,1),则点A关于y轴对称的点的横坐标为﹣(﹣2)=2,纵坐标为1,
故点(﹣2,1)关于y轴对称的点的坐标是(2,1).
故答案为(2,1).
14.将直线y=2021x﹣2018的图象向下平移2个单位后,所得的直线是 y=2021x﹣2020 .
解:将直线y=2021x﹣2018的图象向下平移2个单位长度,所得直线解析式为y=2021x﹣2018﹣2,即y=2021x﹣2020,
故答案为:y=2021x﹣2020.
15.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= 3 .
解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,
∴DF是△ABC的中位线,
∴DF=BC.
又∵点E是直角△ABC斜边BC的中点,
∴AE=BC,
∵DF=3,
∴DF=AE.
故填:3.
16.把容量是的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是 4 .
解:第5组到第7组的频率是0.125,且容量是,那么第5组到第7组的频数是×0.125=8,
那么第8组的频数是﹣(5+7+11+13+8×3)=4.
故答案为:4.
17.如图,在平行四边形ABCD中,E,F两点均在对角线AC上.要使四边形BEDF为平行四边形,在不添加辅助线的情况下,需要增加的一个条件是 AE=CF(答案不唯一) (写出一个即可).
解:增加条件:AE=CF,理由如下:
如图,连接BD交AC于点O,
∵四边形ABCD为平行四边形,
∴OB=OD,OA=OC,
若AE=CF,则有AO﹣AE=CO﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,
故答案为:AE=CF(答案不唯一).
18.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是 (47,16) .
解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,
∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,
∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16
,…
∴根据图象得出C1(2,1),C2(5,2),C3(11,4),
∴直线C1C2的解析式为y=x+,
∵A5的纵坐标为16,
∴C5的纵坐标为16,
把y=16代入y=x+,解得x=47,
∴C5的坐标是(47,16),
故答案为(47,16).
三.解答题(共2小题,每小题6分,共12分)
19.已知在平面直角坐标系xOy中,一次函数的图象经过(3,2)与(﹣1,﹣6)两点.
(1)求这个一次函数解析式;
(2)若此一次函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积.
解:(1)设这个一次函数解析式为y=kx+b(k≠0),
∵y=kx+b的图象过点(3,2)与(﹣1,﹣6),
∴,
解得,,
∴这个一次函数解析式为y=2x﹣4;
(2)令x=0,则y=﹣4
∴点B坐标为(0,﹣4)
令y=0,则2x﹣4=0,得x=2,
∴点A坐标为(2,0),
∴.
20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)将△ABC向右平移4个单位得到的△A1B1C1,请画出△A1B1C1;
(2)△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2;
(3)求出△A2B2C2的面积.
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;
(3)求出△A2B2C2的面积=3×4﹣×1×3﹣×1×3﹣×4×2=5.
四.解答题(共2小题,每小题8分,共16分)
21.某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.
根据以上信息,解答下列问题:
(1)本次调查的学生数为 100 人;
(2)图表中的a、b、c的值分别为 6 , 4 , 4% ;
(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多 44 人;
(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.
四月日人均诵读时间的统计表
| 日人均诵读时间x/h | 人数 | 百分比 |
| 0≤x≤0.5 | 6 | |
| 0.5<x≤1 | 30 | |
| 1<x≤1.5 | 50% | |
| 1.5<x≤2 | 10 | 10% |
| 2<x≤2.5 | b | c |
解:(1)由统计表可得,
本次调查的学生数为:10÷10%=100,
故答案为:100;
(2)由条形统计图可得,a=100﹣60﹣30﹣4=6,
由统计表可得,b=100﹣6﹣30﹣100×50%﹣10=4,c=4÷100=4%,
故答案为:6,4,4%;
(3)由统计表可得,四月份日人均诵读时间在1<x≤1.5范围内的人数有:100×50%=50(人),
由频数分布直方图得,三月份日人均诵读时间在1<x≤1.5范围内的人数有6(人),
故四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多:50﹣6=44(人),
故答案为:44;
(4)由统计表可得,
计该校学生四月份人均诵读时间在1小时以上的人数有:1200×(50%+10%+4%)=768(人),
即计该校学生四月份人均诵读时间在1小时以上的人数有768人.
22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)
解:过C作CD⊥AB交AB延长线于点D,
∵∠ABC=120°,
∴∠CBD=60°,
在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,
∴BD=BC=×20=10(米),
∴CD==10(米),
∴AD=AB+BD=80+10=90米,
在Rt△ACD中,AC==≈92(米),
答:A、C两点之间的距离约为92米.
五.解答题(共2小题,每小题9分,共18分)
23.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
解:(1)设y与x的函数关系式为:y=kx+b,
当0≤x<20时,把(0,0),(20,160)代入y=kx+b中,
得:,解得:,
此时y与x的函数关系式为y=8x;
当20≤x≤45时,把(20,160),(40,288)代入y=kx+b中,
得:,解得:,
此时y与x的函数关系式为y=6.4x+32.
综上可知:y与x的函数关系式为y=.
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,
∴,
∴22.5≤x≤35,
设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6,
∴W随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元),
∴总费用最低的购买方案为:购买35棵B种苗,10棵A种苗,最低费用为326元.
24.如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC的中点,延长BM至点E,使EM=BM,连接DE.
(1)求证:△AMB≌△CND;
(2)若BD=2AB,且AB=5,DN=4,求四边形DEMN的面积.
解:(1)∵平行四边形ABCD中,对角线AC与BD交于点O,
∴AO=CO,
又∵点M,N分别为OA、OC的中点,
∴AM=CN,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAM=∠DCN,
∴△AMB≌△CND(SAS);
(2)∵△AMB≌△CND,
∴BM=DN,∠ABM=∠CDN,
又∵BM=EM,
∴DN=EM,
∵AB∥CD,
∴∠ABO=∠CDO,
∴∠MBO=∠NDO,
∴ME∥DN
∴四边形DEMN是平行四边形,
∵BD=2AB,BD=2BO,
∴AB=OB,
又∵M是AO的中点,
∴BM⊥AO,
∴∠EMN=90°,
∴四边形DEMN是矩形,
∵AB=5,DN=BM=4,
∴AM=3=MO,
∴MN=6,
∴矩形DEMN的面积=6×4=24.
六.综合题(共2小题,每小题10分,共20分)
25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)请直接写出不等式kx+b﹣3x>0的解集.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.
解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:
解得:;
(2)由kx+b﹣3x>0,得
kx+b>3x,
∵点C的横坐标为1,
∴x<1;
(3)由(1)直线AB:y=﹣x+4
当y=0时,有﹣x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m),
∴直线DB:y=,
过点C作CE∥y轴,交BD于点E,则E(1,),
∴CE=|3﹣|
∴S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣|.
∵S△BCD=2S△BOC,即2|3﹣|=×4×3×2,
解得:m=﹣4或12,
∴点D的坐标为D(0,﹣4)或D(0,12).
26.已知,▱ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,点P的速度为每秒1cm,点Q的速度为每秒0.8cm,设运动时间为t秒,若当以A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE.
∵EF垂直平分AC,
∴OA=OC.
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF(AAS).
∵OA=OC,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴四边形AFCE为菱形.
(2)设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,
在Rt△ABF中,AB=4cm,由勾股定理,得
16+(8﹣x)2=x2,
解得:x=5,
∴AF=5.
(3)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;
同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.
∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,
∴以A,C,P,Q四点为顶点的四边形是平行四边形时,
∴PC=QA,
∵点P的速度为每秒1cm,点Q的速度为每秒0.8cm,运动时间为t秒,
∴PC=t,QA=12﹣0.8t,
∴t=12﹣0.8t,
解得:t=.
∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.