一、拓展提优试题
1.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有 杯酒.
2.如果a 表示一个三位数,b表示一个两位数,那么,a+b最小是 a+b最大是 ,a﹣b最小是 ,a﹣b最大是 .
3.如果今天是星期五,那么从今天算起,57天后的第一天是星期 .
4.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有 种.
5.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生 人.
6.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?
7.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为 千克.
8.如果,那么= .
9.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的 倍.
10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生 名.
11.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是 元 角.
12.小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买 支相同的钢笔.
13.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年 岁.
14.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子 个.
15.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是 米.
【参】
一、拓展提优试题
1.解:设李白壶中原有x杯酒,由题意得:
{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,
{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,
{[4x﹣6]×2﹣2}×2﹣2=2,
{8x﹣14}×2﹣2=2,
16x﹣30=2,
16x=32,
x=2;
答:壶中原有2杯酒.
故答案为:2.
2.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.
解:a+b最小是10+100=110,
a+b最大是99+999=1098,
a﹣b最小是100﹣99=1,
a﹣b最大是999﹣10=9.
故答案为:110,1098,1,9.
【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.
3.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.
解:57÷7,
=57÷7,
=8(周)…1(天);
余数是1,星期五再过1天是星期六.
故答案为:六.
【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.
4.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.
解:由以上分析,得出下列情况:
这6枚硬币的面值的和有6种.
故答案为:6.
【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.
5.解:船:(16+4)÷(5﹣3),
=20÷2,
=10(条);
学生:3×10+16=46(人);
答:学校共有学生46人.
故答案为:46.
6.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.
:如图所示:,
设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,
4b+4a+4×4=168
4(a+b)=168﹣16
4(a+b)=152,
4(a+b)÷4=152÷4
a+b=38,
原长方形的周长为:
(b+4+a+4)×2
=(38+8)×2
=46×2
=92(分米).
答:原来长方形的周长是92分米.
7.解:15+16+18+19+20+31=119(千克),
食堂共买走的总量是:119﹣20=99(千克),
99÷3=33(千克),
第二次买走得重量是:15+18=33(千克),
第一次买走得重量是:16+31+19=66(千克);
答:剩下的一袋重量为20千克.
故答案为:20.
8.解:因为,
所以(b+10a)×65=4800+10a+b,
即10a+b=75,
因此b=5,a=7.
即=75.
故答案为:75.
9.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,
所以S△ABE=S△ABC,S△ACE=S△ABC,
S△ADE=S△ACE=S△ABC=S△ABC,
三角形ABC的面积是三角形ADE面积的2倍.
故答案为:2.
10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.
解:(730﹣16)÷17
=714÷17
=42(名);
答:这个班共有学生42名.
故答案为:42.
【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.
11.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.
解:11元8角=11.8元,1元4角=1.4元
(11.8+1.4)÷4
=13.2÷4
=3.3(元);
3.3元=3元3角;
答:每斤西红柿的价格是3元3角.
故答案为:3,3.
【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.
12.【分析】根据题意,可用100减去61计算出购买3支钢笔花的钱数,然后再除以3计算出每支钢笔的钱数,最后再用100除以每支钢笔的钱数进行计算,得到的商就是最多购买钢笔的支数,得到的余数就是剩余的钱数,最后再用最多购买的钢笔数减去原来买的3支即可.
解:(100﹣61)÷3
=39÷3
=13(元)
100÷13=7(支)…9(元)
7﹣3=4(支)
答:他最多还可以买4支同样的钢笔.
故答案为:4.
【点评】此题主要考查的有余数除法计算方法的应用,解答时关键求出每支钢笔的单价.
13.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.
解:3÷()
=3÷()
=3×
=28(岁)
28×=35(岁)
答:爸爸今年35岁.
故答案为:35.
【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.
14.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.
解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:
(31﹣1×2)÷(2×2﹣3)
=29÷1
=29(次)
3×29+31
=87+31
=118(个)
答:袋中原有黑子 118个.
故答案为:118.
【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.
15.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.
而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,
所以梧桐树和桦树间的距离是2米.
故答案为:2.下载本文