typedef struct node {int data; struct node *next;}lklist;
void intersection(lklist *ha,lklist *hb,lklist *&hc)
{
lklist *p,*q,*t;
for(p=ha,hc=0;p!=0;p=p->next)
{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;
if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}
}
}
2、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
3、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include typedef char datatype; typedef struct node{ datatype data; struct node * next; } listnode; typedef listnode* linklist; /*--------------------------------------------*/ /* 删除单链表中重复的结点 */ /*--------------------------------------------*/ linklist deletelist(linklist head) { listnode *p,*s,*q; p=head->next; while(p) {s=p; q=p->next; while(q) if(q->data==p->data) {s->next=q->next;free(q); q=s->next;} else { s=q; /*找与P结点值相同的结点*/ q=q->next; } p=p->next; } return head; } 4、给出折半查找的递归算法,并给出算法时间复杂度性分析。 5、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分 void Hospital(AdjMatrix w,int n) //在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。 {for (k=1;k<=n;k++) //求任意两顶点间的最短路径 for (i=1;i<=n;i++) for (j=1;j<=n;j++) if (w[i][k]+w[k][j] for (i=1;i<=n;i++) //求最长路径中最短的一条。 {s=0; for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。 if (w[i][j]>s) s=w[i][j]; if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。 m记最长路径,k记出发顶点的下标。 Printf(“医院应建在%d村庄,到医院距离为%d\ ”,i,m); }//for }//算法结束 对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。 1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。 6、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。 7、 二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下: typedef struct { int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界 int f; //层次序列中当前“根结点”的双亲结点的指针 int lr; // 1—双亲的左子树 2—双亲的右子树 }qnode; BiTree Creat(datatype in[],level[],int n) //由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\ ”); exit(0);} qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大 init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点 BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点 p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据 for (i=0; i if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树 {p->lchild=null; s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enque ue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 8、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。 void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度 {BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点 int i,top=0,tag[],longest=0; while(p || top>0) { while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下 if(tag[top]==1) //当前结点的右分枝已遍历 {if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度 if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;} //保留当前最长路径到l栈,记住最高栈顶指针,退栈 } else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下 }//while(p!=null||top>0) }//结束LongestPath 9、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。 二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。 10、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分 void Hospital(AdjMatrix w,int n) //在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。 {for (k=1;k<=n;k++) //求任意两顶点间的最短路径 f or (i=1;i<=n;i++) for (j=1;j<=n;j++) if (w[i][k]+w[k][j] for (i=1;i<=n;i++) //求最长路径中最短的一条。 {s=0; for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。 if (w[i][j]>s) s=w[i][j]; if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。 Printf(“医院应建在%d村庄,到医院距离为%d\ ”,i,m); }//for }//算法结束 对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。 1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。 11、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。 设当n=m-1时结论成立,现证明当n=m时结论成立。 设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。 若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。 若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。 最后,当1可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和 {Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。 12、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。 51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。 13、设一棵树T中边 的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。 14、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数 int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数 while(front<=rear) {p=Q[++front]; if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点 if(p->lchild) Q[++rear]=p->lchild; //左子女入队 if(p->rchild) Q[++rear]=p->rchild; //右子女入队 if(front==last) {level++; //二叉树同层最右结点已处理,层数增1 last=rear; } //last移到指向下层最右一元素 if(level>k) return (leaf); //层数大于k 后退出运行 }//while }//结束LeafKLevel 15、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 29. ① 试找出满足下列条件的二叉树 1)先序序列与后序序列相同 2)中序序列与后序序列相同 3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同 16、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。 (1)s-w[n],n-1 //Knap(s-w[n],n-1)=true (2)s,n-1 // Knap←Knap(s,n-1) 17、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。 18、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。 19、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均 为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。 typedef struct {BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问 }stack; stack s[],s1[];//栈,容量够大 BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。 {top=0; bt=ROOT; while(bt!=null ||top>0) {while(bt!=null && bt!=p && bt!=q) //结点入栈 {s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下 if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点 {for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存 if(bt==q) //找到q 结点。 for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配 {pp=s[i].t; for (j=top1;j>0;j--) if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);} } while(top!=0 && s[top].tag==1) top--; //退栈 if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历 }//结束while(bt!=null ||top>0) return(null);//q、p无公共祖先 }//结束Ancestor 20、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。 int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。 const n=用户定义的顶点数; AdjList g ; //用邻接表作存储结构的有向图g。 void dfs(v) {visited [v]=1; num++; //访问的顶点数+1 if (num==n) {printf(“%d是有向图的根。\ ”,v); num=0;}//if p=g[v].firstarc; while (p) {if (visied[p->adjvex]==0) dfs (p->adjvex); p=p->next;} //while visited[v]=0; num--; //恢复顶点v }//dfs void JudgeRoot() //判断有向图是否有根,有根则输出之。 {static int i ; for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。 {num=0; visited[1..n]=0; dfs(i); } }// JudgeRoot 算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。 21、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。 51. 借助于快速排序的算法思想,在一组 无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。 22、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。 23、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={ 写出G的拓扑排序的结果。 G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7 24、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。 #define MAX 100 typedef struct Node {char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main(int argc,int **argv) { TNODE *root; if(argc<3) exit 0; strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred)); postorder(root); } TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______; for((2)_______ ; rpos ptr->llink=restore(ppos+1, (4)_______,k ); ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; } postorder(TNODE*ptr) { if(ptr=NULL) return; postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); } 25、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。 void quickpass(int r[], int s, int t) { int i=s, j=t, x=r[s]; while(i r[i]=x; } 26、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧) 有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的 的下一邻接点的状态为1,就可以输出回路了。 void Print(int v,int start ) //输出从顶点start开始的回路。 {for(i=1;i<=n;i++) if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。 {printf(“%d”,v); if(i==start) printf(“\ ”); else Print(i,start);break;}//if }//Print void dfs(int v) {visited[v]=1; for(j=1;j<=n;j++ ) if (g[v][j]!=0) //存在边(v,j) if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if else {cycle=1; Print(j,j);} visited[v]=2; }//dfs void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。 {for (i=1;i<=n;i++) visited[i]=0; for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i); }//find_cycle 27、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。 28、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分) 29、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数 int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数 while(front<=rear) {p=Q[++front]; if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点 if(p->lchild) Q[++rear]=p->lchild; //左子女入队 if(p->rchild) Q[++rear]=p->rchild; //右子女入队 if(front==last) {level++; //二叉树同层最右结点已处理,层数增1 last=rear; } //last移到指向下层最右一元素 if(level>k) return (leaf); //层数大于k 后退出运行 }//while }//结束LeafKLevel 30、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。 51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h] 中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。 31、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。 32、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。下载本文