视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2012年青海省数据统计高级
2025-10-03 14:44:03 责编:小OO
文档
1、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。

void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数

node edge[];

scanf( "%d%d

if (w[i][j]>s) s=w[i][j];

if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。

Printf(“医院应建在%d村庄,到医院距离为%d\

”,i,m);

}//for

}//算法结束

对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。

6、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。

void quickpass(int r[], int s, int t)

{

int i=s, j=t, x=r[s];

while(iwhile (ix) j=j-1; if (iwhile (i}

r[i]=x;

}

7、数组A和B的元素分别有序,欲将两数组合并到C数组,使C仍有序,应将A和B拷贝到C,只要注意A和B数组指针的使用,以及正确处理一数组读完数据后将另一数组余下元素复制到C中即可。

void union(int A[],B[],C[],m,n)

//整型数组A和B各有m和n个元素,前者递增有序,后者递减有序,本算法将A和B归并为递增有序的数组C。

{i=0; j=n-1; k=0;// i,j,k分别是数组A,B和C的下标,因用C描述,下标从0开始

while(i=0)

if(a[i]while(iwhile(j>=0) c[k++]=b[j--];

}算法结束

4、要求二叉树按二叉链表形式存储。15分

(1)写一个建立二叉树的算法。(2)写一个判别给定的二叉树是否是完全二叉树的算法。

BiTree Creat() //建立二叉树的二叉链表形式的存储结构

{ElemType x;BiTree bt;

scanf(“%d”,&x); //本题假定结点数据域为整型

if(x==0) bt=null;

else if(x>0)

{bt=(BiNode *)malloc(sizeof(BiNode));

bt->data=x; bt->lchild=creat(); bt->rchild=creat();

}

else error(“输入错误”);

return(bt);

}//结束 BiTree

int JudgeComplete(BiTree bt) //判断二叉树是否是完全二叉树,如是,返回1,否则,返回0

{int tag=0; BiTree p=bt, Q[]; // Q是队列,元素是二叉树结点指针,容量足够大

if(p==null) return (1);

QueueInit(Q); QueueIn(Q,p); //初始化队列,根结点指针入队

while (!QueueEmpty(Q))

{p=QueueOut(Q); //出队

if (p->lchild && !tag) QueueIn(Q,p->lchild); //左子女入队

else {if (p->lchild) return 0; //前边已有结点为空,本结点不空

else tag=1; //首次出现结点为空

if (p->rchild && !tag) QueueIn(Q,p->rchild); //右子女入队

else if (p->rchild) retu

rn 0; else tag=1;

} //while

return 1; } //JudgeComplete

8、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。

(1) (3分)给出适用于计数排序的数据表定义;

(2) (7分)使用Pascal或C语言编写实现计数排序的算法;

(3) (4分)对于有n个记录的表,关键码比较次数是多少?

(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

9、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.

typedef struct node

{int data; struct node *lchild,*rchild;}node;

int N2,NL,NR,N0;

void count(node *t)

{if (t->lchild!=NULL) if (1)___ N2++; else NL++;

else if (2)___ NR++; else (3)__ ;

if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;

}

26.树的先序非递归算法。

void example(b)

btree *b;

{ btree *stack[20], *p;

int top;

if (b!=null)

{ top=1; stack[top]=b;

while (top>0)

{ p=stack[top]; top--;

printf(“%d”,p->data);

if (p->rchild!=null)

{(1)___; (2)___;

}

if (p->lchild!=null)

(3)___; (4)__;

}}}}

10、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。

void Platform (int b[ ], int N)

//求具有N个元素的整型数组b中最长平台的长度。

{l=1;k=0;j=0;i=0;

while(i{while(iif(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台

i++; j=i; } //新平台起点

printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);

}// Platform

11、数组A和B的元素分别有序,欲将两数组合并到C数组,使C仍有序,应将A和B拷贝到C,只要注意A和B数组指针的使用,以及正确处理一数组读完数据后将另一数组余下元素复制到C中即可。

void union(int A[],B[],C[],m,n)

//整型数组A和B各有m和n个元素,前者递增有序,后者递减有序,本算法将A和B归并为递增有序的数组C。

{i=0; j=n-1; k=0;// i,j,k分别

是数组A,B和C的下标,因用C描述,下标从0开始

while(i=0)

if(a[i]while(iwhile(j>=0) c[k++]=b[j--];

}算法结束

4、要求二叉树按二叉链表形式存储。15分

(1)写一个建立二叉树的算法。(2)写一个判别给定的二叉树是否是完全二叉树的算法。

BiTree Creat() //建立二叉树的二叉链表形式的存储结构

{ElemType x;BiTree bt;

scanf(“%d”,&x); //本题假定结点数据域为整型

if(x==0) bt=null;

else if(x>0)

{bt=(BiNode *)malloc(sizeof(BiNode));

bt->data=x; bt->lchild=creat(); bt->rchild=creat();

}

else error(“输入错误”);

return(bt);

}//结束 BiTree

int JudgeComplete(BiTree bt) //判断二叉树是否是完全二叉树,如是,返回1,否则,返回0

{int tag=0; BiTree p=bt, Q[]; // Q是队列,元素是二叉树结点指针,容量足够大

if(p==null) return (1);

QueueInit(Q); QueueIn(Q,p); //初始化队列,根结点指针入队

while (!QueueEmpty(Q))

{p=QueueOut(Q); //出队

if (p->lchild && !tag) QueueIn(Q,p->lchild); //左子女入队

else {if (p->lchild) return 0; //前边已有结点为空,本结点不空

else tag=1; //首次出现结点为空

if (p->rchild && !tag) QueueIn(Q,p->rchild); //右子女入队

else if (p->rchild) return 0; else tag=1;

} //while

return 1; } //JudgeComplete

12、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。

void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)

//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。

{if(h1>=l1)

{post[h2]=pre[l1]; //根结点

half=(h1-l1)/2; //左或右子树的结点数

PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列

PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列

} }//PreToPost

32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。

LinkedList head,pre=null; //全局变量

LinkedList InOrder(BiTree bt)

//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head

{if(bt){InOrder(bt->lchild); //中序遍历左子树

if(bt->lchild==null && bt->rchild==null) //叶子结点

if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点

else{pre->rchild=bt

; pre=bt; } //将叶子结点链入链表

InOrder(bt->rchild); //中序遍历左子树

pre->rchild=null; //设置链表尾

}

return(head); } //InOrder

时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

13、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。

void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数

node edge[];

scanf( "%d%d

//Q是元素为qnode类型的队列,容量足够大

init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点

BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点

p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据

for (i=0; iif (in[i]==level[0]) break;

if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树

{p->lchild=null;

s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树

{p->rchild=null;

s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else //根结点有左子树和右子树

{s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列

s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列

}

while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树

{ s=delqueue(Q); father=s.f;

for (i=s.l; i<=s.h; i++)

if (in[i]==level[s.lvl]) break;

p=(bitreptr)malloc(sizeof(binode)); //申请结点空间

p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据

if (s.lr==1) father->lchild=p;

else father->rchild=p; //让双亲的子女指针指向该结点

if (i==s.l)

{p->lchild=null; //处理无左子女

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==s.h)

{p->rchild=null; //处理无右子女

s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列

}

}//结束while (!empty(Q))

return(p);

}//算法结束

15、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。

int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数

{if(bt==null || k<1) return(0);

BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大

int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数

int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数

while(front<=rear)

{p=Q[++front];

if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点

if(p->lchild) Q[++rear]=p->lchild; //左子女入队

if(p->rchild) Q[++rear]=p->rchild; //右子女入队

if(front==last) {level++; //二叉树同层最右结点已处理,层数增1

last=rear; } //last移到指向下层最右一元素

if(level>k) return (leaf); //层数大于k 后退出运行

}//while }//结束LeafKLevel

16、题目中要求矩阵两行元素的平均值按递增顺序

排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。

{int i,j,k,l;

float sum,min; //sum暂存各行元素之和

float *p, *pi, *pk;

for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.

}//for i

for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.

for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)

{pk=matrix+n*k; //pk指向第k行第1个元素.

pi=matrix+n*i; //pi指向第i行第1个元素.

for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.

}//if

}//for i

free(p); //释放p数组.

}// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

17、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={,,,,,,,,}

写出G的拓扑排序的结果。

G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7

18、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。

{int i,j,k,l;

float sum,min; //sum暂存各行元素之和

float *p, *pi, *pk;

for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.

}//for i

for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.

for(j=i+1;jif(i!

i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)

{pk=matrix+n*k; //pk指向第k行第1个元素.

pi=matrix+n*i; //pi指向第i行第1个元素.

for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.

}//if

}//for i

free(p); //释放p数组.

}// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

19、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。

(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true

(2)s,n-1 // Knap←Knap(s,n-1)

20、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。

void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数

node edge[];

scanf( "%d%d

不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。

void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)

//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。

{if(h1>=l1)

{post[h2]=pre[l1]; //根结点

half=(h1-l1)/2; //左或右子树的结点数

PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列

PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列

} }//PreToPost

32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。

LinkedList head,pre=null; //全局变量

LinkedList InOrder(BiTree bt)

//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head

{if(bt){InOrder(bt->lchild); //中序遍历左子树

if(bt->lchild==null && bt->rchild==null) //叶子结点

if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点

else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表

InOrder(bt->rchild); //中序遍历左子树

pre->rchild=null; //设置链表尾

}

return(head); } //InOrder

时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

23、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

29. ① 试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同

3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

24、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。 二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。

25、假设K1,…,Kn是n个关键词,试解答:

试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

26、#define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。

for(i=1; i<=n; i++) //n个整数序列作处理。

{scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1)

// 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\

”);exit(0);}

else s[++top]=x; //x入栈。

else //读入的整数等于-1时退栈。

{if(top==0){printf(“栈空\

”);exit(0);}

else printf(“出栈元素是%d\

”,s[top--]);}

}

}//算法结

27、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x28、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

29、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。

30、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.

typedef struct node

{int data; struct node *lchild,*rchild;}node;

int N2,NL,NR,N0;

void count(node *t)

{if (t->lchild!=NULL) if (1)___ N2++; else NL++;

else if (2)___ NR++; else (3)__ ;

if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;

}

26.树的先序非递归算法。

void example(b)

btree *b;

{ btree *stack[20], *p;

int top;

if (b!=null)

{ top=1; stack[top]=b;

while (top>0)

{ p=stack[top]; top--;

printf(“%d”,p->data);

if (p->rchild!=null)

{(1)___; (

2)___;

}

if (p->lchild!=null)

(3)___; (4)__;

}}}}

31、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。

48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

32、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)

有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。

void Print(int v,int start ) //输出从顶点start开始的回路。

{for(i=1;i<=n;i++)

if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。

{printf(“%d”,v);

if(i==start) printf(“\

”); else Print(i,start);break;}//if

}//Print

void dfs(int v)

{visited[v]=1;

for(j=1;j<=n;j++ )

if (g[v][j]!=0) //存在边(v,j)

if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if

else {cycle=1; Print(j,j);}

visited[v]=2;

}//dfs

void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。

{for (i=1;i<=n;i++) visited[i]=0;

for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);

}//find_cycle

33、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.

typedef struct node

{int data; struct node *lchild,*rchild;}node;

int N2,NL,NR,N0;

void count(node *t)

{if (t->lchild!=NULL) if (1)___ N2++; else NL++;

else if (2)___ NR++; else (3)__ ;

if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;

}

26.树的先序非递归算法。

void example(b)

btree *b;

{ btree *stack[20], *p;

int top;

if (b!=null)

{ top=1; stack[top]=b;

while (top>0)

{ p=stack[top]; top--;

printf(“%d”,p->data);

if (p->rchild!=null)

{(1)___; (2)___;

}

if (p->lchild!=null)

(3)___; (4)__;

}}}}

34、4、void LinkList_reverse(Linklist &L)

//链表的就地逆置;为简化算法,假设表长大于2

{

p=L->next;q=p->next;s=q->next;p->next=NULL;

while(s

->next)

{

q->next=p;p=q;

q=s;s=s->next; //把L的元素逐个插入新表表头

}

q->next=p;s->next=q;L->next=s;

}//LinkList_reverse

35、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。

#include

typedef int datatype;

typedef struct node

{datatype data;

struct node *next;

}listnode;

typedef listnode *linklist;

void jose(linklist head,int s,int m)

{linklist k1,pre,p;

int count=1;

pre=NULL;

k1=head; /*k1为报数的起点*/

while (count!=s) /*找初始报数起点*/

{pre=k1;

k1=k1->next;

count++;

}

while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/

{ p=k1; /*从k1开始报数*/

count=1;

while (count!=m) /*连续数m个结点*/

{ pre=p;

p=p->next;

count++;

}

pre->next=p->next; /*输出该结点,并删除该结点*/

printf("%4d

全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。

int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。

const n=用户定义的顶点数;

AdjList g ; //用邻接表作存储结构的有向图g。

void dfs(v)

{visited [v]=1; num++; //访问的顶点数+1

if (num==n) {printf(“%d是有向图的根。\

”,v); num=0;}//if

p=g[v].firstarc;

while (p)

{if (visied[p->adjvex]==0) dfs (p->adjvex);

p=p->next;} //while

visited[v]=0; num--; //恢复顶点v

}//dfs

void JudgeRoot()

//判断有向图是否有根,有根则输出之。

{static int i ;

for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。

{num=0; visited[1..n]=0; dfs(i); }

 }// JudgeRoot

算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。

40、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。

#define true 1

#define false 0

typedef struct node

{datatype data; struct node *llink,*rlink;} *BTree;

void JudgeBST(BTree t,int flag)

// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。

{ if(t!=null && flag)

{ Judgebst(t->llink,flag);// 中序遍历左子树

if(pre==null)pre=t;// 中序遍历的第一个结点不必判断

else if(pre->datadata)pre=t;//前驱指针指向当前结点

else{flag=flase;} //不是完全二叉树

Judgebst (t->rlink,flag);// 中序遍历右子树

}//JudgeBST算法结束

41、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。

42、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。

43、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。

int Similar(BiTree p,q) //判断二叉树p和q是否相似

{if(p==null && q==null) return (1);

else if(!p && q || p && !q) return (0);

else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))

}//结束Similar

44、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。

48.

有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

45、设有两个集合A和集合B,要求设计生成集合C=A∩B的算法,其中集合A、B和C用链式存储结构表示。

typedef struct node {int data; struct node *next;}lklist;

void intersection(lklist *ha,lklist *hb,lklist *&hc)

{

lklist *p,*q,*t;

for(p=ha,hc=0;p!=0;p=p->next)

{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;

if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}

}

}

46、 将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。

int BPGraph (AdjMatrix g)

//判断以邻接矩阵表示的图g是否是二部图。

{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)

int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组

for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合

Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1

while(f{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号

if (!visited[v])

{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中

for (j=1,j<=n;j++)

if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列

else if (s[j]==s[v]) return(0);} //非二部图

}//if (!visited[v])

}//while

return(1); }//是二部图

[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

47、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。

typedef struct

{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问

}stack;

stack s[],s1[];//栈,容量够大

BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。

{top=0; bt=ROOT;

while(bt!=null ||top>0)

{while(bt!=null && bt!=p && bt!=q) //结点入栈

{s[++top].t=bt; s[top].tag=0; bt=bt->lch

ild;} //沿左分枝向下

if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点

{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存

if(bt==q) //找到q 结点。

for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配

{pp=s[i].t;

for (j=top1;j>0;j--)

if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈

if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历

}//结束while(bt!=null ||top>0)

return(null);//q、p无公共祖先

}//结束Ancestor

48、设有两个集合A和集合B,要求设计生成集合C=A∩B的算法,其中集合A、B和C用链式存储结构表示。

typedef struct node {int data; struct node *next;}lklist;

void intersection(lklist *ha,lklist *hb,lklist *&hc)

{

lklist *p,*q,*t;

for(p=ha,hc=0;p!=0;p=p->next)

{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;

if(q!=0){ t=(lklist *)malloc(sizeof(lklist)); t->data=p->data;t->next=hc; hc=t;}

}

}

49、设指针变量p指向双向链表中结点A,指针变量q指向被插入结点B,要求给出在结点A的后面插入结点B的操作序列(设双向链表中结点的两个指针域分别为llink和rlink)。

50、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。

#include

typedef int datatype;

typedef struct node

{datatype data;

struct node *next;

}listnode;

typedef listnode *linklist;

void jose(linklist head,int s,int m)

{linklist k1,pre,p;

int count=1;

pre=NULL;

k1=head; /*k1为报数的起点*/

while (count!=s) /*找初始报数起点*/

{pre=k1;

k1=k1->next;

count++;

}

while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/

{ p=k1; /*从k1开始报数*/

count=1;

while (count!=m) /*连续数m个结点*/

{ pre=p;

p=p->next;

count++;

}

pre->next=p->next; /*输出该结点,并删除该结点*/

printf("%4d

p->data=i;

p->next=head;

head=p;

}

r->next=head; /*生成循环链表*/

jose(head,s,m); /*调用函数*/

}

}

51、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。

52、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。

53、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)

(1)A和D是合法序列,B和C 是非法序列。

(2)设被判定的操作序列已存入一维数组A中。

int Judge(char A[])

//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。

{i=0; //i为下标。

j=k=0; //j和k分别为I和字母O的的个数。

while(A[i]!=‘\\0’) //当未到字符数组尾就作。

{switch(A[i])

{case‘I’: j++; break; //入栈次数增1。

case‘O’: k++; if(k>j){printf(“序列非法\

”);exit(0);}

}

i++; //不论A[i]是‘I’或‘O’,指针i均后移。}

if(j!=k) {printf(“序列非法\

”);return(false);}

else {printf(“序列合法\

”);return(true);}

}//算法结束。下载本文

显示全文
专题