一、知识要点:
1、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理
如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理.
该定理在应用时,同学们要注意处理好如下几个要点:
①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+
中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.
④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数
满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。
4、最短距离问题:
主要运用的依据是两点之间线段最短。
二、考点剖析
考点一:利用勾股定理求面积
求:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.
2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
考点二:在直角三角形中,已知两边求第三边
例如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对
【强化训练】:1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长
为.
2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是
3、已知直角三角形两直角边长分别为5和12,求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)
考点三:应用勾股定理在等腰三角形中求底边上的高
例、如图1所示,等腰中,
是底边上的高,若,求 ①AD 的长;②ΔABC 的面积.
考点四:应用勾股定理解决楼梯上铺地毯问题
例、某楼梯的侧面视图如图3所示,其中米,
,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应
为 .
考点五、利用列方程求线段的长(方程思想)
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?
【强化训练】:折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM,求CF 和EC 。.
A B C
E
F
D
例、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为
分析:勾股树问题中,处理好两个方面的问题,
一个是正方形的边长与面积的关系,另一个是正方形的面积与直角三角形直角边与斜边的关系。
考点七:应用勾股定理解决数学风车问题
例7、(09年安顺)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。
分析:因为,直角边AC=6,BC=5,当将四个直角三角形中边长为6的直角边分别向外延长一倍后,得到四个直角边分别是12和5的直角三角形,所求的最长实边恰好是这些直角三角
形的斜边长,因此,斜边长为:=13,较短的实边长是6,所以,这个风车的外围周长为:4×13+4×6=76。
解:这个风车的外围周长为76。
考点八:判别一个三角形是否是直角三角形
例1:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有
【强化训练】:已知△ABC中,三条边长分别为a=n2-1,b=2n,c=n2+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.
考点九:其他图形与直角三角形
例:如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
考点十:构造直角三角形解决实际问题
在某一平地上,有一棵树高8米的大树,一棵树高2米的小树,两树之间相距8米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)
考点十一:与展开图有关的计算
例、如图,在棱长为1的正方体ABCD —A ’B ’C ’D ’的表面上,求从顶点A 到顶点C ’的最短距离.
【强化训练】:如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm
四、课时作业优化设计
1.设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.
2.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ).
A .6cm
B .8.5cm
C .3013cm
D .6013
cm 【提升“学力”】
3.如图,△ABC 的三边分别为AC=5,BC=12,AB=13,将△ABC 沿AD 折叠,使AC •落在AB 上,求DC 的长.
4.如图,一只鸭子要从边长分别为16m 和6m 的长方形水池一角M •游到水池另一边中点N ,那么这只鸭子游的最短路程应为多少米?
A
B
【聚焦“中考”】
5.如图,铁路上A、B两点相距25km,C、D为两村庄,DA•垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到
E站的距离相等,则E站建在距A站多少千米处?下载本文