视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
几何五大模型
2025-10-03 15:14:55 责编:小OO
文档
五大模型

一、等积变换模型

⑴等底等高的两个三角形面积相等;

其它常见的面积相等的情况

  

⑵两个三角形高相等,面积比等于它们的底之比;

两个三角形底相等,面积比等于它们的高之比。

    

如上图

⑶夹在一组平行线之间的等积变形,如下图;

反之,如果,则可知直线平行于。

⑷正方形的面积等于对角线长度平方的一半;

⑸三角形面积等于与它等底等高的平行四边形面积的一半;

二、鸟头定理(共角定理)模型

两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 

如图,在中,分别是上的点(如图1)或在的延长线上,在上(如图2),则

图1                    图2

三、蝴蝶定理模型

任意四边形中的比例关系(“蝴蝶定理”):

①或者②

蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”) 

②;

③梯形的对应份数为。

四、相似模型

相似三角形性质:

金字塔模型              沙漏模型

①;

②。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:

⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;

⑵相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型

S△ABGS△AGCS△BGES△EGCBEEC

S△BGAS△BGCS△AGFS△FGCAFFC

S△AGCS△BCGS△ADGS△DGBADDB

典型例题精讲 

例1  一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三角形的面积是21平方厘米。问:长方形的面积是__________平方厘米。

例1图

例2  如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE 。则两块地ACF和CFB的面积比是__________。

例2图

【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?

举一反三图

【拓展】如图,已知长方形ADEF的面积16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是多少? 

拓展图

例3  如图,将三角形ABC的AB边延长1倍到D,BC边延长2倍到E,CA边延长3倍到F。如果三角形ABC的面积等于1,那么三角形DEF的面积是__________。

例3图

【拓展】如图,在△ABC中,延长AB至D,使BD=AB,延长BC至E,使,F是AC的中点,若△ABC的面积是2,则△DEF的面积是多少? 

拓展图

例4  如图,在△ABC中,已知M、N分别在边AC、BC上,BM与AN相交于O,若△AOM、△ABO和△BON的面积分别是3、2、1,则△MNC的面积是__________。 

例4图

【秒杀题】四边形ABCD的对角线AC与BD交于点O(如图所示)。如果三角形ABD的面积等于三角形BCD的面积的,且AO=2,DO=3, 那么CO的长度是DO的长度的__________倍。 

秒杀题图

例5  如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积。 

 

例5图

例6  如右图长方形ABCD中,EF=16,F=9,求AG的长。 

 

例6图

【铺垫】图中四边形 ABCD是边长为12cm的正方形,从 G到正方形顶点C、D 连成一个三角形,已知这个三角形在 AB上截得的 EF长度为4cm,那么三角形GDC的面积是多少?

 

铺垫图

例7  如图,长方形ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH=5cm,HF=3cm,求AG。

 

例7图

例8  如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB。 

例8图

【拓展】如图,三角形ABC的面积是1,BD=DE=EC, CF=FG=GA,三角形ABC被分成9部分,请写出这9部分的面积各是多少? 

 

拓展图

例9  如右图,△ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG交于M,AF与BG交于N,已知△ABM的面积比四边形FCGN的面积大7.2平方厘米,则△ABC的面积是多少平方厘米?

例9图

例10  如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF=2DF,连接BF,DE,相交于点G,过G作MN,PQ得到两个正方形MGQA和正方形PCNG,设正方形MGQA的面积为S1,正方形PCNG的面积为S2,则S1:S2=______。

例10图下载本文

显示全文
专题