教学目标:人工智能的几个主要学派及认知观。初步了解人工智能的研究与应用领域。
教学重点:符号主义(Symbolicism),联结主义(Connectionism),行为主义(Actionism)。
教学难点:各学派的对人工智能的不同观点。
教学方法:课堂讲授为主。
教学要求:了解各派别之间的关系及对人工智能发展历史的看法。
教学过程
一复习与导入
人工智能三大学派
·符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
·联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。
·行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知。
二、新授
1、机器智能可以模拟人类智能
物理符号系统假设的推论一告诉人们,人有智能,所以他是一个物理符号系统;推论三指出,可以编写出计算机程序去模拟人类的思维活动。这就是说,人和计算机这两个物理符号系统所使用的物理符号是相同的,因而计算机可以模拟人类的智能活动过程。
2、智能计算机的功能
如下棋、证明定理、翻译语言文字和解决难题等。神经计算机(neural computer)能够以类似人类的方式进行“思考”,它力图重建人脑的形象。一些国家对量子计算机的研究也已起步,希望通过对量子计算(quantum computing)的研究,产生量子计算机。
讨论:为什么能够用电脑模拟人脑智能?人工智能三大学派对人工智能的不同看法
符号主义 认为人工智能源于数理逻辑。符号主义仍然是人工智能的主流派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。
联结主义 认为人工智能源于仿生学,特别是人脑模型的研究。
行为主义 认为人工智能源于控制论。这一学派的代表作首推布鲁克斯(Brooks)的六足行走机器人,它被看做新一代的“控制论动物”,是一个基于感知-动作模式的模拟昆虫行为的控制系统。
3、 人工智能的研究与应用领域
(1) 问题求解—— 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序,它包含问题的表示、分解、搜索与归约等。
(2 )逻辑推理与定理证明—— 逻辑推理是人工智能研究中最持久的子领域之一,特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。
(3)定理证明的研究——在人工智能方法的发展中曾经产生过重要的影响。例如,采用谓词逻辑语言的演绎过程的形式化有助于更清楚地理解推理的某些子命题。许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
我国人工智能大师吴文俊院士提出并实现了几何定理机器证明的方法,被国际上承认为“吴氏方法”,是定理证明的又一标志性成果。
(4). 自然语言理解—— 语言处理也是人工智能的早期研究领域之一,并引起了进一步的重视。语言的生成和理解是一个极为复杂的编码和解码问题。
一个能理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。理解口头的和书写语言的计算机系统所取得的某些进展,其基础就是有关表示上下文知识结构的某些人工智能思想以及根据这些知识进行推理的某些技术。
(6) 自动程序设计—— 对自动程序设计的研究不仅可以促进半自动软件开发系统的发展,而且也使通过修正自身数码进行学习(即修正它们的性能)的人工智能系统得到发展。程序理论方面的有关研究工作对人工智能的所有研究工作都是很重要的。
自动程序设计研究的重大贡献之一是作为问题求解策略的调整概念。已经发现,对程序设计或机器人控制问题,先产生一个不费事的有错误的解,然后再修改它(使它正确工作),这种做法一般要比坚持要求第一个解就完全没有缺陷的做法有效得多。
(7) 专家系统—— 一般地说,专家系统是一个智能计算机程序系统,其内部具有大量专家水平的某个领域知识与经验,能够利用人类专家的知识和解决问题的方法来解决该领域的问题。 发展专家系统的关键是表达和运用专家知识,即来自人类专家的并已被证明对解决有关领域内的典型问题是有用的事实和过程。
(8 )机器学习—— 学习是人类智能的主要标志和获得知识的基本手段;机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径;机器学习还有助于发现人类学习的机理和揭示人脑的奥秘。学习是一个有特定目的的知识获取过程,其内部表现为新知识结构的不断建立和修改,而外部表现为性能的改善。
(9) 神经网络—— 神经网络处理直觉和形象思维信息具有比传统处理方式好得多的效果。
神经网络已在模式识别、图象处理、组合优化、自动控制、信息处理、机器人学和人工智能的其它领域获得日益广泛的应用。
(10) 机器人学—— 人工智能研究日益受到重视的另一个分支是机器人学,其中包括对操作机器人装置程序的研究。这个领域所研究的问题,从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法,无所不包。目前已经建立了一些比较复杂的机器人系统。
机器人和机器人学的研究促进了许多人工智能思想的发展。
智能机器人的研究和应用体现出广泛的学科交叉,涉及众多的课题,机器人已在各领域获得越来越普遍的应用。
(11 )模式识别—— 人工智能所研究的模式识别是指用计算机代替人类或帮助人类感知模式,是对人类感知外界功能的模拟,研究的是计算机模式识别系统,也就是使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。
(12 )机器视觉—— 实验表明,人类接受外界信息的80%以上来自视觉,视觉对人类是非常重要的。
机器视觉或计算机视觉已从模式识别的一个研究领域发展为一门的学科;在视觉方面,已经给计算机系统装上电视输入装置以便能够“看见”周围的东西。
机器视觉的前沿研究领域包括实时并行处理、主动式定性视觉、动态和时变视觉、三维景物的建模与识别、实时图像压缩传输和复原、多光谱和彩色图像的处理与解释等。
(13 )智能控制—— 人工智能的发展促进自动控制向智能控制发展。智能控制是一类无需(或需要尽可能少的)人的干预就能够地驱动智能机器实现其目标的自动控制。
智能控制是同时具有以知识表示的非数学广义世界模型和数学公式模型表示的混合控制过程,也往往是含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理,以启发来引导求解过程。
(14 )智能检索—— 随着科学技术的迅速发展,出现了“知识爆炸”的情况,研究智能检索系统已成为科技持续快速发展的重要保证。
智能信息检索系统的设计者们将面临以下几个问题。首先,建立一个能够理解以自然语言陈述的询问系统本身就存在不少问题。其次,即使能够通过规定某些机器能够理解的形式化询问语句来回避语言理解问题,但仍然存在一个如何根据存储的事实演绎出答案的问题。第三,理解询问和演绎答案所需要的知识都可能超出该学科领域数据库所表示的知识。
(15) 智能调度与指挥——确定最佳调度或组合的问题是人们感兴趣的又一类问题,求解这类问题的程序会产生一种组合爆炸的可能性,这时,即使是大型计算机的容量也会被用光。
(16 )计算智能与进化计算——计算智能(Computing Intelligence)涉及神经计算、模糊计算、进化计算等研究领域。
进化计算(Evolutionary Computation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(Genetic Algorithms)、进化策略(Evolutionary Strategies)和进化规划(Evolutionary Programming)。
17 人工生命——人工生命(Artificial Life, ALife)旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(life as it could be)的广阔范围内深入研究“生命之所知”(life as we know it)的实质。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。
三、网上调研实践
1.几类取得重大成就的领域及成就。
2.就你感兴趣的领域,查找人工智能实例。如仿和机器人学,天气预报智能系统等,将你搜集学习研究的内容,发到电子学习档案袋中。
四、交流活动
评价交流活动报告表
| AI领域 | 主要实例 | 特色及发展简述 |
人工智能的重要应用领域包括自然语言处理,自动定理证明,智能数据检索系统,视觉系统,问题求解,智能代理,自动程序设计。
已研制出的智能系统,应用于人机博弈,解微分方程,设计分析集成电路,自然语言合成,情报检索,疾病诊断和机器人等。
五、知识树
六、课后记下载本文