视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
初中数学解题策略
2025-10-03 15:08:28 责编:小OO
文档
初中数学解题策略之探究

在考试时,我们常觉得时间很紧,考卷还没做完,就到收卷时间了,这里面的原因之一,就是解题速度太慢。几乎每个学生都知道,要想获得好成绩,务必增强练习,只有多做习题,方能熟能生巧。可是有些学生天天做题,但解出的题量却无几。花了很多的时间,却没有解出数量多的习题,难道不应该找一找原因吗?何况,我们并比不上另外的人时间更多。试着想想,假如你的解题速度增长10倍,那会是怎样一种情形?解题速度增长10倍?有可能吗?答案是肯定的,绝对有可能。关键在于你想与没想到了。数学不等于做题,千万不要忽视最基本的概念、公理、定理和公式,寒假里要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特別是容易混淆的概念更要彻底搞清,不留隐患。数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,注重发现题与题之间的内在联系,要“苦做”更要“巧做”,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。此外,大家在平时做题时就要及时记录错题,还要想一想为什么会错、以后要特別注意哪些地方,这样就能避免不必要的失分。如果试题中涉及你的薄弱环节,一定要通过短时间的专题学习,攻克难关,別留下弱点。首先,应非常知道得清楚习题中所牵涉的内部实质意义,做到概念清楚,对定义、公式、定理和规则清楚明白。解题、做练习只是学习过程中的一个环节,而不是学习的所有,不可为解题而解题。解题是为阅览服务的,是查缉你是否读懂了课本,是否深刻了解了那里面的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清楚,对公式、定理和规则越清楚,解题速度就越快。所以,我们在解题之前,应经过阅览课本和做简单的练习,先清楚、记忆和鉴别这些基本内部实质意义,准确了解其含义的实质,继续立刻就做后面所配的练习,一刻也不要停留。我引导学生按此办法学习,几乎全部的学生都大大增长理解题的速度,其效果非常好。第二,还要清楚习题中所牵涉的曾经学过的知识和与其他学科有关的知识。例如,有时,我们碰到一道不会做的习题,不是我们没有学会如今所要学会的内部实质意义,而是要用到以往已经学过的一个公式,而我们却想不起来了,或是算术题中要用到的一个物理概念,而我们对此已不清楚了,或是需用到一个特别的定理,而我们却从未学过,这么就使解题速度大为降低。这时我们应先补充一点务必补充的有关知识,弄明白与标题有关的概念、公式或定理,而后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。下面我将谈一下增长解题速度的几个方法。1.根据处方配药法所说的根据处方配药,就是把一个解析式利用恒等变型的办法,把那里面的某些项配成一个或几个多项式。经过根据处方配药解决算术问题的办法叫根据处方配药法。那里面,用得最多的是配成绝对平形式。根据处方配药法是算术中一种重要的恒等变型的办法,它的应用十分广泛,在因式分解、化简根式、解方程、证实等式和不等式、求函数的极值和解析式等方面都常常用到它。2.因式分解法因式分解,就是把一个多项式化成几个整式乘积的方式。因式分解是恒等变型的基础,它作为算术的一个有力工具、一种算术办法在代数、几何、三角学等的解题中起着重要的效用。因式分解的办法有很多,除中学教科书上介绍的取得公因式法、公式法、分组分解法、十字相乘法等外,还有利用拆项添项、求根分解、换元、待定系数法等等。3.换元法换元法是算术中一个十分重要并且应用非常广泛的解题办法。我们一般把未知数或变数称为元,所说的换元法,就是在一个比较复杂的算术式子中,用新的变元去接替原式的一个局部或改造原来的式子,使它简化,使问题便于解决。4.辨别式法与韦达定理一元二次方程 ax 2+bx+c=0(a、b、c归属r,a≠0)根的辨别,△=b 2-4ac,不止用来分辨断定根的性质,并且作为一种解题办法,在代数式变型,解方程(组),解不等式,研讨函数乃至几何、三角算中都有十分广泛的应用。 韦达定理除开已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一点相关二次曲线的问题等,都有十分广泛的应用。5.待定系数法在解算术问题时,若先判断所求的最后结果具备某种确认的方式,那里面包括某些待定的系数,然后依据题设条件列出关于待定系数的等式,最终解出这些个待定系数的值或找到这些个待定系数间的某种关系,因此解释回答算术问题,这种解题办法称为待定系数法。它是中学算术中重要的办法之一。下载本文

显示全文
专题