视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
数学思想十大数学思想方法
2025-10-04 22:09:52 责编:小OO
文档
数学思想十大数学思想方法

 数学思想 十大数学思想方法

 一、假设法

 当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。

 例:在一次登山活动中,胖楚楚上山时每分钟走50米,到达山顶后沿原路下山,每分钟走75米,胖楚楚上山下山的平均速度是多少?

 【分析与解】

 我们要求平均速度,就必须知道上、下山共走了多少米的路,可它是个未知数,我们一点也不知道,这时我们就可以假设上、下山的总路程是150米(150是50和75的最小公倍数),那么平均速度就是用总路程除以总时间就可以了。假设上山和下山分别都是150米;150÷50=3分,150÷75=2分;150×2=300米;所以平均速度是:300÷(2+3)=60(米/分)。在这其中我们也用到了另外一种方法,在数学上叫做“特殊值”代入法,在以后的学习中我们将会更多的接触到这种方法。

 还有在我们的经典类型——鸡兔同笼当中,大部分题型都是用我们的假设法。

 二、对应法

 应用题的一些数量关系之间存在着对应关系,如总数与总份数的对应,路程与时间的对应,分数、百分数应用题中量与率的对应等。解题时找准数量之间的对应关系,就能实现由未知向已知的转化。这种运用对应关系解题的方法,就是对应法。

 例:如果把两个连在一起的圆称为一对,那么图(1)中相连的圆共有多少对?

 将各圆心用线段连起来,两圆心的“连线”与“一对圆”之间可建立“一对一”的对应关系。于是将数有多少个圆,转化为数有多少条相邻圆心之间的连线。而每个“正摆”的小等边三角形有三条“连线”。所以相连的圆共有

 对。

 三、从简单情况考虑

 有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。很多情况下我们可以通过这种方法解决一些看起来很难的问题。

 例:__-__-__8÷__-__6的商是_____________ 

 【分析与解】

 这个题目我们当然可以列一个竖式来做,但这样是不是太麻烦了,观察算式的特点,4,8,6都有9个,那我们就先来看一下如果4,8,6分别各有1个,2个,3个商分别是多少,这个计算起来是非常简单的:48÷6=8 ,4488÷66=68 ,__÷666=668 。 

 个6 ,1个8)。 

 四、从极端情况考虑

 从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。

 例:新上任的宿舍管理员拿着20把钥匙去开20个房间的门,他知道每把钥匙只能打开其中的一个门,但不知道哪一把钥匙开哪一个门,现在要打开所有关闭的20个门,他最多要开多少次?

 【分析与解】

 从最不利的极端情况考虑:打开第一个房间要20次,打开第二个房间需要19次。共计最多要开20+19+18+。+1=210(次)。

 五、从特殊情况考虑

 对于一个一般性的问题,如果觉得难以入手,那么我们可以先考虑它的某些特殊情况,从而获得解决的途径,使问题得以“突破”,这种方法称为特殊化。其实从问题的极端情况考虑,也是从特殊情况考虑。对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法。运用特殊化方法进行探索的过程有两个步骤,即先由一般到特殊,再由特殊到一般。通过第一步骤得到的信息,还要回到一般情况予以解答。但我们能熟练使用这种方法后,就只需在特殊状态下得到答案即可。

 例:如右图,四边形ABCD和EFGH都是正方形,且边长均为2cm。又E点是正方形 ABCD的中心,求两个正方形公共部分(图中阴影部分)的面积S。

 【分析与解】

 我们先考虑正方形EFGH的特殊位置,即它的各边与正方形ABCD的各边对应平行的情况。此时,显然有S=2×2×1/4=1。

 六、从反面考虑问题(正难则反)

 解数学题,需要正确的思路。对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。

 例:某次数学测验一共出了10道题,评分方法如下:每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。问:此次测验至多有多少种不同的分数?

 【分析与解】

 最高的得分为50分,最低的得分为0分。但并不是从0分到50分都能得到。从正面考虑计算量较大,故我们从反面考虑,先计算有多少种分数达不到,然后排除达不到的分数就可以了。最高的得分为50分,最低的得分为0分。

 列表分析:

 不答相对与答对少的4分,答错相对与答对少得5分,这样的话不答和答错之间少1分,所以比38分少的分数的情况都存在。所以,在从0分到50分这51个分数中,有49,48,47,44,43,39这6种分数是不能达到的,故此次测验不同的分数至多有51-6=45(种)。

 七、从整体考虑问题

 有时候具体的去分析局部的细节会感到却少条件,无从下手,这时候如果我们站的高一点,看的远一点,从整体出发去考虑问题,往往会起到意想不到的效果。

 例:现有一个3×4的长方形,现在任意横着切2刀,竖着切4刀,把长方形分成了15个小长方形,求这15个小长方形的周长之和是多少?

 【分析与解】

 很明显,这15个小长方形中任何一个的周长我们都求不出,如果从局部出发,是不可能求出来的。因此我们要从整体出发去考虑。

 观察发现,每横着切一刀,那么长方形就增加了两条长为4的边,即周长和增加8,而每竖着切一刀,那么长方形就增加了两条长度为3的边,即周长和增加6。因为长方形的周长为2×(3+4)=14,所以横着切2刀,竖着切4刀后周长和为:14+2×8+4×6=54 。

 八、等量代换法

 小朋友们一定都知道曹冲(曹操的小儿子)称大象的故事吧。曹冲用一条船,让大象先上船,看船被河水水面淹没到什么位置,然后刻上记号。把大象赶上岸,再把这条船装上石块,当船被水面淹没到记号的位置时,就可以判断:船上的石块共有多重,大象就有多重。

 为什么大象的重量可以换成一船石块的重量呢?因为两次船下沉后被水面所淹没的深度一样,只有当大象与一船石头一样重(重量相等)时,才会淹没得一样深。

 曹冲称象”不是瞎称的,而是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换。解数学题,经常会用到这种思考方法。

 例:师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱。班长到商店后,发现商店正在进行促销活动,规定每5个空瓶可换1瓶矿泉水。班长只要买 瓶矿泉水,就可以保证每人一瓶。

 因为5个空瓶=1瓶水+1个空瓶;所以4个空瓶=1瓶水;

 所以每买4瓶水能够5个人喝;52/5=10......2,班长只要买10X4+2=42瓶矿泉水,就可以保证每人一瓶。

 九、枚举法

 其特点是有条理,不易重复或遗漏,使人一目了然。适用于所求的对象为有限个。

 例:从1到100的自然数中,每次取出两个数,要使它们的和大于100,共有多少种取法?

 【分析与解】

 在1到100中,每次取出两个数,使它们和大于100,取法肯定繁多。但其中一定有一个较小的数,因此我们可以采用例举类推法,通过枚举较小数的所有可能性来例举分析,类推解答。

 较小的数是1,只有一种取法,即[1,100]。

 较小的数是2,有两种取法,即[2,99]、[2,100]。

 较小的数是3,有三种取法,即[3,98]、[3,99]、[3,100]。  。

 较小的数是50,有50种取法,即[50,51]、[50,52]。[50,100]。

 较小的数是51,有49种取法,即[51,52]、[51,53]。[51,100]。  。

 较小的数是99的只有一种取法,即[99,100]。

 因此一共有:1+2+3+。+50+49+。+2+1=502=2500(种)。

 综上所述可以看出,此类方法适合于数目、种类不很繁杂的题;分析时应尽量做到分类全面、不重不漏。

 十、奇偶性分析法

 加减法的奇偶性

 、符号无用

 、偶数无用

 、奇数个奇数是奇数

 乘法的奇偶性

 遇偶得偶

 例:桌子上有5个杯子,开口全部朝上,每次同时翻其中的4个,请问是否可以经过有限次翻动使得5个杯子都开口向下。

 【分析与解】

 一个杯子从开口向上变为开口向下,要翻动奇数次,5个杯子翻动的次数和为5个奇数的和,因此是奇数;从总体考虑,每次翻动4个,因此总次数是4的倍数,必然是偶数。由于奇数不等于偶数,所以不可能经过有限次翻动使得5个杯子,使得所有5个杯子都开口向下。下载本文

显示全文
专题