我假设你已经知道了标准级的文件操作的各个函数(fopen,fread,fwrite等等).当然如果你不清楚的话也不要着急.我们讨论的系统级的文件操作实际上是为标准级文件操作服务的.
当我们需要打开一个文件进行读写操作的时候,我们可以使用系统调用函数open.使用完成以后我们调用另外一个close函数进行关闭操作.
#include #include #include #include int open(const char *pathname,int flags); int open(const char *pathname,int flags,mode_t mode); int close(int fd); open函数有两个形式.其中pathname是我们要打开的文件名(包含路径名称,缺省是认为在当前路径下面).flags可以去下面的一个值或者是几个值的组合. O_RDONLY:以只读的方式打开文件. O_WRONLY:以只写的方式打开文件. O_RDWR:以读写的方式打开文件. O_APPEND:以追加的方式打开文件. O_CREAT:创建一个文件. O_EXEC:如果使用了O_CREAT而且文件已经存在,就会发生一个错误. O_NOBLOCK:以非阻塞的方式打开一个文件. O_TRUNC:如果文件已经存在,则删除文件的内容. 前面三个标志只能使用任意的一个.如果使用了O_CREATE标志,那么我们要使用open的第二种形式.还要指定mode标志,用来表示文件的访问权限.mode可以是以下情况的组合. ----------------------------------------------------------------- S_IRUSR 用户可以读 S_IWUSR 用户可以写 S_IXUSR 用户可以执行 S_IRWXU 用户可以读写执行 ----------------------------------------------------------------- S_IRGRP 组可以读 S_IWGRP 组可以写 S_IXGRP 组可以执行 S_IRWXG 组可以读写执行 ----------------------------------------------------------------- S_IROTH 其他人可以读 S_IWOTH 其他人可以写 S_IXOTH 其他人可以执行 S_IRWXO 其他人可以读写执行 ----------------------------------------------------------------- S_ISUID 设置用户执行ID S_ISGID 设置组的执行ID ----------------------------------------------------------------- 我们也可以用数字来代表各个位的标志.Linux总共用5个数字来表示文件的各种权限. 00000.第一位表示设置用户ID.第二位表示设置组ID,第三位表示用户自己的权限位,第四位表示组的权限,最后一位表示其他人的权限. 每个数字可以取1(执行权限),2(写权限),4(读权限),0(什么也没有)或者是这几个值的和. 比如我们要创建一个用户读写执行,组没有权限,其他人读执行的文件.设置用户ID位那么我们可以使用的模式是--1(设置用户ID)0(组没有设置)7(1+2+4)0(没有权限,使用缺省)5(1+4)即10705: open("temp",O_CREAT,10705); 如果我们打开文件成功,open会返回一个文件描述符.我们以后对文件的所有操作就可以对这个文件描述符进行操作了. 当我们操作完成以后,我们要关闭文件了,只要调用close就可以了,其中fd是我们要关闭的文件描述符. 文件打开了以后,我们就要对文件进行读写了.我们可以调用函数read和write进行文件的读写. #include ssize_t read(int fd, void *buffer,size_t count); ssize_t write(int fd, const void *buffer,size_t count); fd是我们要进行读写操作的文件描述符,buffer是我们要写入文件内容或读出文件内容的内存地址.count是我们要读写的字节数. 对于普通的文件read从指定的文件(fd)中读取count字节到buffer缓冲区中(记住我们必须提供一个足够大的缓冲区),同时返回count. 如果read读到了文件的结尾或者被一个信号所中断,返回值会小于count.如果是由信号中断引起返回,而且没有返回数据,read会返回-1,且设置errno为EINTR.当程序读到了文件结尾的时候,read会返回0. write从buffer中写count字节到文件fd中,成功时返回实际所写的字节数. 下面我们学习一个实例,这个实例用来拷贝文件. #include #include #include #include #include #include #include #define BUFFER_SIZE 1024 int main(int argc,char **argv) { int from_fd,to_fd; int bytes_read,bytes_write; char buffer[BUFFER_SIZE]; char *ptr; if(argc!=3) { fprintf(stderr,"Usage:%s fromfile tofile \\a",argv[0]); exit(1); } /* 打开源文件 */ if((from_fd=open(argv[1],O_RDONLY))==-1) { fprintf(stderr,"Open %s Error:%s ",argv[1],strerror(errno)); exit(1); } /* 创建目的文件 */ if((to_fd=open(argv[2],O_WRONLY|O_CREAT,S_IRUSR|S_IWUSR))==-1) { fprintf(stderr,"Open %s Error:%s ",argv[2],strerror(errno)); exit(1); } /* 以下代码是一个经典的拷贝文件的代码 */ while(bytes_read=read(from_fd,buffer,BUFFER_SIZE)) { /* 一个致命的错误发生了 */ if((bytes_read==-1)&&(errno!=EINTR)) break; else if(bytes_read>0) { ptr=buffer; while(bytes_write=write(to_fd,ptr,bytes_read)) { /* 一个致命错误发生了 */ if((bytes_write==-1)&&(errno!=EINTR))break; /* 写完了所有读的字节 */ else if(bytes_write==bytes_read) break; /* 只写了一部分,继续写 */ else if(bytes_write>0) { ptr+=bytes_write; bytes_read-=bytes_write; } } /* 写的时候发生的致命错误 */ if(bytes_write==-1)break; } } close(from_fd); close(to_fd); exit(0); } 2。文件的各个属性 文件具有各种各样的属性,除了我们上面所知道的文件权限以外,文件还有创建时间,大小等等属性. 有时侯我们要判断文件是否可以进行某种操作(读,写等等).这个时候我们可以使用access函数. #include int access(const char *pathname,int mode); pathname:是文件名称,mode是我们要判断的属性.可以取以下值或者是他们的组合. R_OK文件可以读,W_OK文件可以写,X_OK文件可以执行,F_OK文件存在.当我们测试成功时,函数返回0,否则如果有一个条件不符时,返回-1. 如果我们要获得文件的其他属性,我们可以使用函数stat或者fstat. #include #include int stat(const char *file_name,struct stat *buf); int fstat(int filedes,struct stat *buf); struct stat { dev_t st_dev; /* 设备 */ ino_t st_ino; /* 节点 */ mode_t st_mode; /* 模式 */ nlink_t st_nlink; /* 硬连接 */ uid_t st_uid; /* 用户ID */ gid_t st_gid; /* 组ID */ dev_t st_rdev; /* 设备类型 */ off_t st_off; /* 文件字节数 */ unsigned long st_blksize; /* 块大小 */ unsigned long st_blocks; /* 块数 */ time_t st_atime; /* 最后一次访问时间 */ time_t st_mtime; /* 最后一次修改时间 */ time_t st_ctime; /* 最后一次改变时间(指属性) */ }; stat用来判断没有打开的文件,而fstat用来判断打开的文件.我们使用最多的属性是st_mode.通过着属性我们可以判断给定的文件是一个普通文件还是一个目录,连接等等.可以使用下面几个宏来判断. S_ISLNK(st_mode):是否是一个连接.S_ISREG是否是一个常规文件.S_ISDIR是否是一个目录S_ISCHR是否是一个字符设备.S_ISBLK是否是一个块设备S_ISFIFO是否 是一个FIFO文件.S_ISSOCK是否是一个SOCKET文件. 我们会在下面说明如何使用这几个宏的. 3。目录文件的操作 在我们编写程序的时候,有时候会要得到我们当前的工作路径。C库函数提供了getcwd来解决这个问题。 #include char *getcwd(char *buffer,size_t size); 我们提供一个size大小的buffer,getcwd会把我们当前的路径考到buffer中.如果buffer太小,函数会返回-1和一个错误号. Linux提供了大量的目录操作函数,我们学习几个比较简单和常用的函数. #include #include #include #include #include int mkdir(const char *path,mode_t mode); DIR *opendir(const char *path); struct dirent *readdir(DIR *dir); void rewinddir(DIR *dir); off_t telldir(DIR *dir); void seekdir(DIR *dir,off_t off); int closedir(DIR *dir); struct dirent { long d_ino; off_t d_off; unsigned short d_reclen; char d_name[NAME_MAX+1]; /* 文件名称 */ mkdir很容易就是我们创建一个目录,opendir打开一个目录为以后读做准备.readdir读一个打开的目录.rewinddir是用来重读目录的和我们学的rewind函数一样.closedir是关闭一个目录.telldir和seekdir类似与ftee和fseek函数. 下面我们开发一个小程序,这个程序有一个参数.如果这个参数是一个文件名,我们输出这个文件的大小和最后修改的时间,如果是一个目录我们输出这个目录下所有文件的大小和修改时间. #include #include #include #include #include #include #include static int get_file_size_time(const char *filename) { struct stat statbuf; if(stat(filename,&statbuf)==-1) { printf("Get stat on %s Error:%s ", filename,strerror(errno)); return(-1); } if(S_ISDIR(statbuf.st_mode))return(1); if(S_ISREG(statbuf.st_mode)) printf("%s size:%ld bytes\modified at %s", filename,statbuf.st_size,ctime(&statbuf.st_mtime)); return(0); } int main(int argc,char **argv) { DIR *dirp; struct dirent *direntp; int stats; if(argc!=2) { printf("Usage:%s filename \\a",argv[0]); exit(1); } if(((stats=get_file_size_time(argv[1]))==0)||(stats==-1))exit(1); if((dirp=opendir(argv[1]))==NULL) { printf("Open Directory %s Error:%s ", argv[1],strerror(errno)); exit(1); } while((direntp=readdir(dirp))!=NULL) if(get_file_size_time(direntp- exit(1); } 4。管道文件 Linux提供了许多的过滤和重定向程序,比如more cat 等等.还提供了< > | <<等等重定向操作符.在这些过滤和重 定向程序当中,都用到了管道这种特殊的文件.系统调用pipe可以创建一个管道. #include int pipe(int fildes[2]); pipe调用可以创建一个管道(通信缓冲区).当调用成功时,我们可以访问文件描述符fildes[0],fildes[1].其中fildes[0]是用来读的文件描述符,而fildes[1]是用来写的文件描述符. 在实际使用中我们是通过创建一个子进程,然后一个进程写,一个进程读来使用的. 关于进程通信的详细情况请查看进程通信 #include #include #include #include #include #include #include #define BUFFER 255 int main(int argc,char **argv) { char buffer[BUFFER+1]; int fd[2]; if(argc!=2) { fprintf(stderr,"Usage:%s string \\a",argv[0]); exit(1); } if(pipe(fd)!=0) { fprintf(stderr,"Pipe Error:%s \\a",strerror(errno)); exit(1); } if(fork()==0) { close(fd[0]); printf("Child[%d] Write to pipe \\a",getpid()); snprintf(buffer,BUFFER,"%s",argv[1]); write(fd[1],buffer,strlen(buffer)); printf("Child[%d] Quit \\a",getpid()); exit(0); } else { close(fd[1]); printf("Parent[%d] Read from pipe \\a",getpid()); memset(buffer,'\\0',BUFFER+1); read(fd[0],buffer,BUFFER); printf("Parent[%d] Read:%s ",getpid(),buffer); exit(1); } } 为了实现重定向操作,我们需要调用另外一个函数dup2. #include int dup2(int oldfd,int newfd); dup2将用oldfd文件描述符来代替newfd文件描述符,同时关闭newfd文件描述符.也就是说, 所有向newfd操作都转到oldfd上面.下面我们学习一个例子,这个例子将标准输出重定向到一个文件. #include #include #include #include #include #include #include #define BUFFER_SIZE 1024 int main(int argc,char **argv) { int fd; char buffer[BUFFER_SIZE]; if(argc!=2) { fprintf(stderr,"Usage:%s outfilename \\a",argv[0]); exit(1); } if((fd=open(argv[1],O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR))==-1) { fprintf(stderr,"Open %s Error:%s \\a",argv[1],strerror(errno)); exit(1); } if(dup2(fd,STDOUT_FILENO)==-1) { fprintf(stderr,"Redirect Standard Out Error:%s \\a",strerror(errno)); exit(1); } fprintf(stderr,"Now,please input string"); fprintf(stderr,"(To quit use CTRL+D) "); while(1) { fgets(buffer,BUFFER_SIZE,stdin); if(feof(stdin))break; write(STDOUT_FILENO,buffer,strlen(buffer)); } exit(0); } 好了,文件一章我们就暂时先讨论到这里,学习好了文件的操作我们其实已经可以写出一些比较有用的程序了.我们可以编写一个实现例如dir,mkdir,cp,mv等等常用的文件操作命令了. 想不想自己写几个试一试呢? 前言:Linux下的时间概念 这一章我们学习Linux的时间表示和计算函数 时间的表示 时间的测量 计时器的使用 1。时间表示 在程序当中,我们经常要输出系统当前的时间,比如我们使用date命令的输出结果.这个时候我们可以使用下面两个函数 #include time_t time(time_t *tloc); char *ctime(const time_t *clock); time函数返回从1970年1月1日0点以来的秒数.存储在time_t结构之中.不过这个函数的返回值对于我们来说没有什么实际意义.这个时候我们使用第二个函数将秒数转化为字符串. 这个函数的返回类型是固定的:一个可能值为. Thu Dec 7 14:58:59 2000 这个字符串的长度是固定的为26 2。时间的测量 有时候我们要计算程序执行的时间.比如我们要对算法进行时间分析.这个时候可以使用下面这个函数. #include int gettimeofday(struct timeval *tv,struct timezone *tz); strut timeval { long tv_sec; /* 秒数 */ long tv_usec; /* 微秒数 */ }; gettimeofday将时间保存在结构tv之中.tz一般我们使用NULL来代替. #include { unsigned int i,j; double y; for(i=0;i<1000;i++) for(j=0;j<1000;j++) y=sin((double)i); } main() { struct timeval tpstart,tpend; float timeuse; gettimeofday(&tpstart,NULL); function(); gettimeofday(&tpend,NULL); timeuse=1000000*(tpend.tv_sec-tpstart.tv_sec)+ tpend.tv_usec-tpstart.tv_usec; timeuse/=1000000; printf("Used Time:%f ",timeuse); exit(0); } 这个程序输出函数的执行时间,我们可以使用这个来进行系统性能的测试,或者是函数算法的效率分析.在我机器上的一个输出结果是: Used Time:0.556070 3。计时器的使用 Linux操作系统为每一个进程提供了3个内部间隔计时器. ITIMER_REAL:减少实际时间.到时的时候发出SIGALRM信号. ITIMER_VIRTUAL:减少有效时间(进程执行的时间).产生SIGVTALRM信号. ITIMER_PROF:减少进程的有效时间和系统时间(为进程调度用的时间).这个经常和上面一个使用用来计算系统内核时间和用户时间.产生SIGPROF信号. 具体的操作函数是: #include int getitimer(int which,struct itimerval *value); int setitimer(int which,struct itimerval *newval, struct itimerval *oldval); struct itimerval { struct timeval it_interval; struct timeval it_value; } getitimer函数得到间隔计时器的时间值.保存在value中 setitimer函数设置间隔计时器的时间值为newval.并将旧值保存在oldval中. which表示使用三个计时器中的哪一个. itimerval结构中的it_value是减少的时间,当这个值为0的时候就发出相应的信号了. 然后设置为it_interval值. #include #include #include #include #include #define PROMPT "时间已经过去了两秒钟 \\a" char *prompt=PROMPT; unsigned int len; void prompt_info(int signo) { write(STDERR_FILENO,prompt,len); } void init_sigaction(void) { struct sigaction act; act.sa_handler=prompt_info; act.sa_flags=0; sigemptyset(&act.sa_mask); sigaction(SIGPROF,&act,NULL); } void init_time() { struct itimerval value; value.it_value.tv_sec=2; value.it_value.tv_usec=0; value.it_interval=value.it_value; setitimer(ITIMER_PROF,&value,NULL); } int main() { len=strlen(prompt); init_sigaction(); init_time(); while(1); exit(0); } 这个程序每执行两秒中之后会输出一个提示. 下载本文