视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
浅谈基于神经网络的电阻点焊工艺参数优化(2)
2025-10-05 01:33:31 责编:小OO
文档
该网络实质上是对任意非线性映射关系的一种逼近,由于采用的是全局逼近的方法,因而BP网络具有较好的泛化的能力。 

  我们主要是利用神经网络的非线性自适应能力,将它用于消音锯片的电阻点焊过程。训练过程是:通过点焊实验获得目标函数与各影响因素间的离散关系,用神经网络的隐式来表达输入输出的函数关系,即将实验数据作为样本输入网络进行训练,建立输入输出之间的非线性映射关系,并将知识信息储存在连接权上,从而利用网络的记忆功能形成一个函数。不断地迭代可以达到sse(误差平方和)最小。 

  我们这次做的消音金刚石锯片电焊机,通过实验发现可以通过采用双隐层BP神经网络就可以很好的反应输入输出参数的非线性关系。输入神经元为3,分别对应3个电阻点焊工艺参数。输出神经元为1,对应焊接质量指标参数。设第1隐含层神经元取为s1,第2隐含层神经元取为s2。输入层和隐含层以及隐层之间的激活函数都选取Log-Sigmoid型函数,输出层的激活函数选取Pureline型函数。 

  2点焊样本的选取 

  影响点焊质量的参数有很多,我们选取点焊时的控制参数,即点焊时间,电极力和焊接电流,在固定式点焊机上进行实验。选用钢种为50Mn2V,Φ600m的消音型薄型圆锯片基体为进行实验。对需要优化的参数为点焊时间,电极力和焊接电流3个参数进行的训练。最后的结果为焊接质量,通常以锯片的抗拉剪载荷为指标。 

  建立BP神经网络时,选择样本非常重要。样本的选取关系到所建立的网络模型能否正确反映所选点焊参数和输出之间的关系。利用插值法,将输入变量在较理想的区间均匀分布取值,如果有m个输入量,每个输入量均匀取n个值(即每个输入量有m个水平数), 则根据排列组合有nm个样本。对应于本例,有3个输入量,每个变量有5个水平数,这样训练样本的数目就为53=125个。 

  我们的实验,是以工人的经验为参考依据,发现点焊时间范围为2~8s,电极力范围为500~3000N,点焊电流范围为5~20kA时,焊接质量比较好。我们先取点焊电流,电极力为定量,在合理的范围内不断改变点焊时间,得到抗拉剪载荷。如此,可以得到不同点焊电流和电极力的抗拉剪载荷。根据点焊数据的发布情况,我们共选用200组数据。部分测试数据如表1: 

  神经网络建模的关键是训练,而训练时随着输入参数个数的增加样本的排列组合数也急剧增加,这就给神经网络建模带来了很大的工作量,甚至于无法达到训练目的。 

  3神经网络 

  我们用200组训练样本对进行神经网络训练,以err_goal=0.01为目标。调用Matlab神经网络工具箱中的函数编程计算,实现对网络的训练,训练完成后便得到一个网络模型。 

  程序 

  x1=[2.1 2.5 3 3.5 4……]; %点焊时间输入,取200组 

  x2=[1.3 1.5 1.9 2.1 2.3……];%电极力输入,取200组 

  x3=[9 10 11 12 13……];%点焊电流输入,取200组 

  y=[2756 3167 35 32 2877……]; %输出量,取200组 

  net=newff([1 10;0.5 3;5 20],[10 10 1],{‘tansig‘‘tansig‘‘purelin‘});

 net.trainParam.goal = 0.01;%设定目标值 

  net=train(net,[x1;x2;x3],y);%训练网络 

  figure; %画出图像 

  选取不同的s1,s2,经过不断的神经网络训练,发现当s1=8,s2=6时,神经网络可以达到要求。工具箱示意图如下图1。 

  图 1工具箱示意图 

  工具箱示意图非常清晰地表示了本实验的神经网络的输入,输出以及训练的过程。 

  神经网络的训练结果,如图2所示: 

  图2神经网络的学习过程 

  图中可以看出双层网络训练的sse在训练100次时,已经接近0.0001,效果较理想。 

  为了验证经过训练的网络模型的泛化能力,在输入变量所允许的区域内又另选多个样本进行了计算。发现:利用BP神经网络模型计算的测试输出与期望输出值相符,误差小于2%。

  在已经训练好的网络中找出最大值: 

  for i=2:10 %点焊时间选择 

for j=0.5:0.1:3%电极力选择 

   fork=5:0.1:20%点焊电流选择 

  a=sim(net,[i,j,k]);%仿真 

  ifan %比较仿真结果与最大值,取最大值n=a; 

   i(1)=i;%最大值的时间 

   j(1)=j;%最大值的电极力 

   k(1)=k; %最大值的电流 

   end 

 

   

  将i(1),j(1),k(1)以及n输出,n为最大值。得到点焊时间为3.4s,电极力为12.7kN,点焊电流为11.8kA,此时的抗剪拉剪载荷为4381N,为训练结果的最大值。将点焊时间为3.4s,电极力为12.7kN,点焊电流为11.8kA在点焊机上进行实验,得到结果为4297N。并且通过与实际的结果相比较,发现误差也在2%以内。 

  4结论 

  1)本文采用了插值法作为选取BP神经网络训练样本的方法。并且在数据变化剧烈的地方多选取了75组数据,这样可以得到较高精度的网络模型,使点焊模型的可行性。 

  2)基于此方法建立了三个点焊参数的BP神经网络模型,而且所建的BP模型具有较高的精度,可以很好的描述了这三个点焊参数与点焊质量的映射关系。 

  3)由于神经网络模型将系统结构参数与传统动态特性参数之间的物理关系,反映为神经网络模型的网络输入与网络输出的数学关系,因此,在神经网络模型上进行结构修正与优化比在其他模型上更直接,简单与高效。 

  本文采用神经网络的方法优化复合消音锯片的点焊工艺参数,为分析点焊质量提供了很好的辅助手段。通过与以前工艺相比较,提高了点焊质量。 下载本文

显示全文
专题