学院 xx 14xxxx
摘要
一、汽车的组成及分类
汽车是由上万个零件组成的机动交通工具,基本结构主要由发动机、底盘车身和电器与电子设备四大部分组成。通常按汽车的用途分为轿车、客车、载货汽车、越野汽车、牵引汽车、自卸汽车、农用汽车、专用汽车和改装车等
二、汽车的结构设计特点与发展趋势
1、零件标准化、部件通用化、产品系列化
2、 考虑使用条件的复杂多变
3、重视汽车使用中的安全、可靠、经济与环保
4、注意外观造型
5、在保证可靠性的前提下尽量减小汽车的自身质量
6、汽车的结构设计要符合有关标准和法规
7、综合考虑人机工程、交通工程、制造工程和管理工程
三丶汽车行驶的基本原理
一 发动机基本知识
汽车的动力源是发动机,发动机是把某一种形式的能量转变成机械能的机器。现代汽车所使用的发动机多为内燃机,内燃机是把燃料燃烧的化学能转变成热能,然后又把热能转变成机械能的机器,并且这种能量转换过程是在发动机气缸内部进行的。 内燃机的分类方法很多,按照不同的分类方法可以把内燃机分成不同的类型。
发动机基本构造
发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。
(1) 曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。
(2) 配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。
(3) 燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。
(4)进排气系统
进排气系统的功用是将可燃混合器或新鲜空气均匀地分配到各个气缸中,并汇集各个气缸燃烧后地废气,从排气消声器排出。
(5) 润滑系统
润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。
(6) 冷却系统
冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
(7) 点火系统
在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。
(8) 起动系统
要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。
二 汽车传动系概述
传动系的基本功用与组成
汽车传动系的基本功用是将发动机发出的动力传给驱动车轮。
传动系的组成及其在汽车上的布置形式,取决于发动机的形式和性能、汽车总体结构形式、汽车行驶系及传动系本身的结构形式等许多因素。目前广泛应用于普通双轴货车上并与内燃机配用的机械式传动系的组成及布置形式.发动机纵向布置在汽车前部,并且以后轮为驱动轮。
三 离合器
离合器的功用及摩擦离合器的工作原理 一、离合器的功用 离合器是汽车传动系中直接与发动机相连接的部件。
四 变速器与分动器
现代汽车广泛使用活塞式内燃机作为动力源,其转矩和转速变化范围较小,而复杂的使用条件则要求汽车的牵引力和车速能在相当大的范围内变化,所以在传动系中设有变速器。它的功用:1、改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,如起步、加速、上坡等,同时使发动机在有利的工况下工作;2、在发动机旋转方向不变的前提下,使汽车能倒退行驶;3、利用空挡,中断动力传递,以使发动机能够起动、怠速,并便于变速器换挡或进行动力输出。变速器由变速传动机构和操纵机构组成,根据需要,还可加装动力输出器。按传动比变化方式,变速器可分为有级式、无级式和综合式三种。
万向传动装置
在汽车传动系及其它系统中,为了实现一些轴线相交或相对位置经常变化的转轴之间的动力传递,必须采用万向传动装置。万向传动装置一般由万向节和传动轴组成,有时还要有中间支承。万向节按其在扭转方向上是否有明显的弹性,可分为刚性万向节和挠性万向节。刚性万向节又可以分为不等速万向节、准等速万向节和等速万向节。
驱动桥
驱动桥功用:1、降速增扭;2、通过主减速器改变转矩的传递方向;3、通过差速器实现两侧车轮差速作用,保证内、外车轮以不同转速转向。驱动桥的类型有断开式和非断开式驱动桥两种
(1)非断开式驱动桥也称为整体式驱动桥,它由驱动桥壳1,主减速器,差速器和半轴7组成。
(2)断开式驱动桥为了与悬架相配合,将主减速器壳固定在车架上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。为了适应驱动轮上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。
车桥
车桥通过悬架和车架相连,它的两端安装车轮,其功用是传递车架与车轮之间各方向的作用力及其力矩。
根据悬架结构的不同,车桥分为整体式和断开式两种;根据车桥上车轮的作用,车桥又可以分为转向桥、驱动桥、转向驱动桥和支持桥。
车轮与轮胎
车轮与轮胎是汽车行驶系中的重要部件,其功用是:
1、承载整辆汽车,就是架在四只车轮的轮胎之上的,不同尺寸与类型以及轮胎的气压决定了汽车承载能力的大小。 2、减震缓冲来自路面的各种震动与冲击,让车内的乘客感觉舒服与安静,不少人对轮胎的最初评价便来源于此。
3、抓地力的大小。抓地喜欢开车的人还能够明显地感觉到轮胎的抓地力,不同对于汽车行驶与制动的影响,轮胎的花纹、轮胎橡胶的配方都可能影响到抓地力的大小。
4、操控提高车辆的操控性能,使得汽车能够得心应手地行驶,不仅令驾驶更加安全与轻松,而且往往有利于节约燃料、延长汽车使用寿命。
5、稳定可靠是所有车主对于轮胎的要求,而耐磨正是稳定可靠的保证。
悬架
悬架是车架与车桥之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力纵向反力和侧向反力以及这些反力所造成的力矩都要传递到车架上,以保证汽车的正常行驶。
现代汽车的悬架尽管有各种不同的结构形式,但一般都由弹性元件、减振器和导向机构组成。
汽车悬架可分为两大类:非悬架和悬架。非悬架其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。悬架其两侧车轮安装于断开式车桥上,两侧车轮分别地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。
五 汽车行驶的基本原理
我们知道汽车要运动,就必须有克服各种阻力的驱动力,也就是说,汽车在行驶中所需要的功率和能量是取决于它的行驶阻力。
因此,我们首先要了解的就是阻力。有些概会问了,我们只要给汽车装个大功率的发动机就好了,还用得着管它什么阻力么?如果是这样就会面临几个问题:1、究竟多大功率的发动机才可以呢?没有一个对比参照物,我们如何确定我们需要多大功率呢;2、汽车的设计是先设计了汽车的总成,比如底盘,车体等等的部分之后,才设计和选用发动机的,如果不知道这部汽车将面对的阻力,那么我们根本没办法设计出实用的汽车;3、就算有了非常大功率的发动机(足够可否任何在地面行驶时的阻力),并且已经装上了合适的车体,在使用中也会因为行驶性、油耗,排放,保养,维修等问题而使你无法正常使用它。由此可见,我们要了解汽车的动力性,首先就是要知道我们所遇阻力有哪些。 一般,汽车的行驶阻力可以分为稳定行驶阻力和动态行驶阻力。 稳定行驶阻力包括了车轮阻力、空气阻力以及坡度阻力。
车轮阻力
我们所说的车轮阻力其实是由轮胎的滚动阻力、路面阻力还有轮胎侧偏引起的阻力所构成。
当汽车在行驶时会使得轮胎变形,而不是一直保持静止时的圆形,而由于轮胎本身的橡胶和内部的空气都具有弹性,因此在轮胎滚动是会使得轮胎反复经历压缩和伸展的过程,由此产生了阻尼功,即变形阻力。而轮胎在路面行驶时,胎面与地面之间存在着纵向和横向的相对局部滑动,还有车轮轴承内部也会有相对运动,因此又会有摩擦阻力产生。由于我们是被空气所包围的,只要是运动的物体就会受到空气阻力的影响。这三种阻力:变形阻力、摩擦阻力还有轮胎空气阻力的总和便是轮胎的滚动阻力了。 而路面阻力就是轮胎在各种路面上的滚动阻力,由于各种路面不同,而产生的阻力也不同,在这里就不详细研究了。还有便是轮胎侧偏引起的阻力,这是由于车轮的运动方向与受到的侧向力产生了夹角而产生的。
空气阻力
汽车在行驶时,需要挤开周围的空气,汽车前面受气流压力并且形成真空,产生压力差,此外还存在着各层空气之间以及空气与汽车表面的摩擦,再加上冷却发动机、室内通风以及汽车表面外凸零件引起的气流干扰等,就形成了空气阻力。我们在汽车指标中经常见得的风阻就是计算空气阻力时的空气阻力系数。这个系数是越小越好。
坡度阻力
即汽车上坡时,其总重量沿路面方向的分力形成的阻力。 在动态行驶阻力方面,主要就是惯性力了,它包括平移质量引起的惯性力,也包括旋转质量引起的惯性力矩。
动力性能与燃油经济性
汽车的动力性能是指车辆在各种路面行驶时所能达到的平均行驶速度的性能。其主要的评价指标有:
1、最高车速Vmax(km/h):汽车以最大额定载荷,发动机全负荷,在纵向坡度不大于0.15%的平坦、干燥、清洁的良好路面上,环境风速不大于3m/s、标准大气压、和正常气温条件下获得的车速。
2、最大爬坡度imax(%)。 3、比功率(kW/t):汽车发动机功率(kW)与车辆总质量(t)之比。现代汽车,无论是轿车还是货车,比功率都在不断地增加。例如,1999年GB7258规定我国机动车的比功率应不小于4.8kW/t,而现在我国20吨总质量的汽车列车的比功率都达到6kW/t以上,国外同类型的列车甚至达到9kW/t以上。
此外,还有用加速时间(t)和加速距离(m)来表示的。
制动性
汽车的制动性是指车辆行驶时能在尽可能短的距离内将车辆停下来,并具有一定的方向稳定性以及在各种道路上(尤其是下长坡)减速或维持一定车速的能力。
汽车制动性的评价指标是:
1、制动效能
车辆的制动距离和制动减速度都与制动器产生的制动力以及地面与轮胎间产生的地面制动力的大小有关。地面制动力的最大值受轮胎与地面间的附着系数(极限附着力)的。当地面制动力等于或大于极限附着力时,车轮就会被抱死。
2、制动稳定性
车辆的制动稳定性是指车辆在制动过程中不发生跑偏、侧滑或失去转向能力的性能。
当两轴汽车前轴左右车轮的制动力矩不相等,或制动时悬架的杆系与转向系拉杆运动不协调等都会引起跑偏现象;
当两轴汽车的前轴先被制动抱死后,车辆将会失去转向能力;
当两轴汽车的后轴先被制动抱死后,后轴将会产生侧滑,严重时汽车还会调头。
轮胎与地面间的附着系数有纵向附着系数和侧向附着系数。它们都是随车轮的滑移率而变化的。
为了避免汽车的后轴车轮被抱死,常常在制动过程中采用某种装置,随着制动强度的增加,以不同的方式不断地减小后轮制动器的制动力矩增加的速率,这种装置就称为制动力调节装置。
3、制动效能的恒定性
汽车在繁重工作条件下制动时,制动器的温度高达300ºC以上,有时甚至达到600ºC~700ºC。温度很高时,制动摩擦力矩会显著下降。这种现象就称为“热衰退”。若经几次冷制动后,制动效能又得以恢复,就称为“热恢复”。汽车的制动效能恒定性,应符合热制动试验的相应要求。
操纵稳定性
汽车操纵稳定性可以归结为:①汽车在行驶过程中,驾驶员不打转向盘时维持直线行驶的能力;②在打转向盘后,沿预定的路线行驶的能力;以及③在上述两种情况下,受到外界干扰时,抵御外界干扰并继续维持预定路线行驶的能力。有时,前两者称为操纵性,后者称为稳定性。
通过性
汽车的通过性(越野性)是指能以足够高的平均行驶车速通过各种坏路或无路地带(Off-road)以及某些(不是各种....)障碍的能力。
舒适性(行驶平顺性)
1、汽车行驶平顺性主要研究车辆在行驶过程中产生的振动和冲击对乘员舒适性程度的影响和保持所运输货物完好程度的影响。
2、人体对舒适性的主观感觉:疲劳—工效降低界限(ISO2631《人承受全身振动的评价指南》)。对货物完好性的评价并没有一个统一的标准,只能进行主观的直觉的判断。
3、双轴汽车或多轴汽车除了垂直振动外,还有纵向角振动和侧向角振动。所有振动参数中,影响最大的是振动角速度和振动角加速度。
4、车辆是一个非常复杂的振动系统。人—座椅—悬架(包括弹性车轮)更是主要的研究内容。解决问题主要靠实验。
5、行驶平顺性控制主要是悬架参数的控制。如前所述,有主动悬架、半主动悬架和高度控制等。这里所述的悬架,包括座椅的悬架系统,如可变座椅阻尼的“智能气囊”——气阻尼控制PDC(pneumatic damping control)系统等。
安全性
汽车的安全性分主动安全性和被动安全性。
1、主动安全性及其控制 汽车主动安全性就是车辆具有对事故的预防能力,它包括: ——使用可靠性; ——操纵稳定性;
——环境安全性:如减小车辆噪声、振动、各种气候条件对驾驶员和乘员的心理压力;
——感觉安全性:如尽可能大的视野,灯光、声响、视觉报警系统等使驾驶员能及时地做出正确判断;
——操作安全性:如人机工程等。
2、被动安全性及其控制
汽车的被动安全性是指在发生交通事故时车辆具有良好的防碰撞能力,并保证驾、乘人员免受伤害或尽量减轻伤害程度的能力,以及同时保护第三者(行人、非机动车和机动车驾驶员)安全的能力。这些措施有:“坚固”的车身(合理的变形、事故后车门依然可以开启)、安全带、安全气囊、车内软化(软化内饰、安全玻璃、吸能转向盘和转向柱等)、前下、后下、侧面防碰撞装置、火灾预防措施等。
参考文献
1、《汽车发动机原理》 徐兆坤 主编 北京 清华大学出版社 2010
2、《现代汽车发动机原理》赵丹平 主编 北京 北京大学出版社 2010
3、《现代汽车电子技术》高义军
4、《汽车为什么会“跑”:图解汽车构造与原理》
5、《汽车构造》 陈家瑞
6、《汽车基本构造与新技术》
7、《新型汽车发动机集中控制系统的硏究与开发》陈渝光 主编 西安交通大学 2004下载本文